Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (3): 334-345    DOI: 10.3785/j.issn.1006-754X.2025.04.175
机器人与机构设计     
复合式跳跃仿生机器人设计与分析
魏晓华(),韩峰(),韩晓亮,何明忠
辽宁工程技术大学 机械工程学院,辽宁 阜新 123000
Design and analysis of bionic robot with compound jumping
Xiaohua WEI(),Feng HAN(),Xiaoliang HAN,Mingzhong HE
College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
 全文: PDF(5412 KB)   HTML
摘要:

为了提高多足跳跃机器人的跳跃高度,基于跳蛛的腿部结构和跳跃机理,设计了一种机身弹射与腿部伸展相结合的复合跳跃式机器人。首先,根据跳蛛的跳跃机理,设计了机器人腿部结构和弹射装置,并利用UG三维建模软件对机器人整体进行建模;其次,利用MD-H(modified Denavit-Hartenberg,改进DH)法对机器人腿部进行运动学建模并分析,利用MATLAB软件计算机器人腿部的工作空间,并采用拉格朗日法进行动力学计算;然后,设计了采用棘轮和锥齿轮传动的弹射装置,并根据能量守恒定律和胡克定律设计了其储能弹簧;接着,设计了机器人运动控制系统;最后,进行ADAMS运动仿真,得出机器人垂直跳跃时最大高度为734.117 6 mm,向前跳跃时最大向前距离为447.641 7 mm,整个运动过程用时1.5~2.0 s,并采用3D打印技术制作了实物模型进行实验验证。研究结果表明,多足跳跃机器人采用复合式跳跃方式,可以有效增大垂直跳跃高度和向前跳跃距离,因此具有更好的实用性。

关键词: 跳蛛跳跃机器人弹射装置运动仿真    
Abstract:

In order to improve the jumping height of multi-legged jumping robot, based on the leg structure and jumping mechanism of jumping spider, a composite jumping robot based on fuselage ejection and leg extension was designed. Firstly, based on the jumping mechanism of jumping spider, the leg structure and ejection device of robot were designed, and the overall structure of robot was modeled using UG 3D modeling software. Secondly, the MD-H (modified Denavit-Hartenberg) method was used for conduct kinematic modeling and analysis of the robot's leg, MATLAB software was used to calculate the working space of the robot's leg, and Lagrange method was used to calculate the dynamics of the leg. Then, a ejection device employing ratchet drive and bevel gear drive was designed, and its energy storage spring was designed according to the law of energy conservation and Hooke's law. Next, the motion control system for the robot was established. Finally, ADAMS motion simulation was carried out, and the results showed that the maximum height was 734.117 6 mm when the robot jumped vertically, and the maximum forward distance was 447.641 7 mm when it jumped forward. The whole motion process took 1.5-2.0 s. A physical model was made using 3D printing technology for experimental verification. The research results show that the composite jumping motion of multi-legged jumping robot can effectively improve the vertical jumping height and forward jumping distance, so the robot has better practicality.

Key words: jumping spider    jumping robot    ejection device    motion simulation
收稿日期: 2024-10-18 出版日期: 2025-07-02
CLC:  TP 242  
基金资助: 辽宁省教育厅项目(LJ2019JL024)
通讯作者: 韩峰     E-mail: wei_xiaohua2003@163.com;hanfeng_0110@163.com
作者简介: 魏晓华(1977—),女,讲师,博士,从事机械设计、机电液系统仿真与应用、机器人结构设计及优化等研究,E-mail: wei_xiaohua2003@163.com, https://orcid.org/0009-0009-7718-4112
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏晓华
韩峰
韩晓亮
何明忠

引用本文:

魏晓华,韩峰,韩晓亮,何明忠. 复合式跳跃仿生机器人设计与分析[J]. 工程设计学报, 2025, 32(3): 334-345.

Xiaohua WEI,Feng HAN,Xiaoliang HAN,Mingzhong HE. Design and analysis of bionic robot with compound jumping[J]. Chinese Journal of Engineering Design, 2025, 32(3): 334-345.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.175        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/334

图1  跳蛛腿分布示意图
图2  跳蛛腿的组成
图3  跳蛛跳跃过程
图4  弹簧减震装置
图5  机器人整体模型
图6  机器人结构简图1—后腿;2—中间腿;3—机身;4—前腿;5—弹射装置;6—储能弹簧。
图7  机器人跳跃过程
图8  机器人腿部坐标系示意
连杆αi-1/(°)ai-1θidi
100θ10

2

3

4

-90

0

0

0

L2

L3

θ2

θ3

θ4

0

0

0

表1  机器人腿部D-H模型参数
图9  髋关节运动时机器人腿部工作空间
图10  髋关节不运动时机器人腿部工作空间
图11  机器人腿部动力学简化模型
图12  机器人弹射装置结构
图13  弹射装置传动机构结构
图14  弹射装置传动示意图
部件长度/mm质量/g尺寸(长×宽)/mm×mm
髋部连杆44.229.72
股骨连杆10025.31
膝-胫连杆10434.44
跗骨连杆14040.03
基座350.21215×115
表2  机器人主要部件的参数
图15  弹簧弹力曲线
图16  弹簧变形量曲线
图17  弹簧变形速度曲线
图18  机器人运动控制系统硬件结构
图19  跳蛛跳跃时的腿部姿态
图20  机器人垂直跳跃仿真过程
关节步足1步足2步足3步足4步足5步足6
髋关节000000
腿关节-60-60-60606060
膝关节606060-60-60-60
跗关节50/-3050/-3050/30-50/30-50/30-50/30
表3  机器人垂直跳跃时腿部关节角度设置 (°)
图21  机器人垂直跳跃时质心高度曲线
图22  机器人垂直跳跃时质心速度曲线
图23  机器人垂直跳跃时质心加速度曲线
图24  机器人向前跳跃仿真过程
关节步足1步足2步足3步足4步足5步足6
髋关节000000
腿关节-29/29-35/-40/75-53.5/-40/93.529/-29-35/-40/-75-53.5/-40/93.5
膝关节35/-3525/40/-6538.5/40/-78.5-35/35-25/-40/65-38.5/-40/78.5
跗关节40/30/-709.9/40/-49.922/60/-82-40/-30/70-9.9/-40/49.9-22/-60/82
表4  机器人向前跳跃时腿部关节角度设置 (°)
图25  机器人向前跳跃时质心 Z 向位移曲线
图26  机器人向前跳跃时质心 Z 向速度曲线
图27  机器人向前跳跃质心 Z 向加速度曲线
图28  机器人向前跳跃时质心 Y 向位移曲线
图29  机器人向前跳跃时质心 Y 向速度曲线
图30  机器人向前跳跃质心 Y 向加速度曲线
图31  机器人弹射装置和腿部模型
图32  机器人跳跃高度实验与仿真结果的对比
图33  机器人跳跃速度实验与仿真结果的对比
图34  模型跳跃姿态
[1] 简珣. 仿生机器人研究综述及发展方向[J]. 机器人技术与应用, 2022(3): 17-20.
JIAN X. Review and development direction of bionic robot research[J]. Robot Technique and Application, 2022(3): 17-20.
[2] 张建, 周俊杰, 苑士华, 等. 水陆两栖仿生机器人构形、运动机理及建模控制综述[J]. 机器人, 2023, 45(3): 367-384.
ZHANG J, ZHOU J J, YUAN S H, et al. Review of configuration, motion mechanism, modeling and control of amphibious bionic robots[J]. Robot, 2023, 45(3): 367-384.
[3] CUI Z A, LI L, WANG Y H, et al. Review of research and control technology of underwater bionic robots[J]. Intelligent Marine Technology and Systems, 2023, 1(1): 7.
[4] 莫小娟, 葛文杰, 任逸飞, 等. 基于起跳稳定性的仿蝗虫八杆跳跃机器人设计[J]. 机械工程学报, 2023, 59(5): 41-52. doi:10.3901/jme.2023.05.041
MO X J, GE W J, REN Y F, et al. Design of locust-inspired eight-bar jumping robot based on take-off stability[J]. Journal of Mechanical Engineering, 2023, 59(5): 41-52.
doi: 10.3901/jme.2023.05.041
[5] 莫小娟, 葛文杰, 赵东来, 等. 微小型跳跃机器人研究现状综述[J]. 机械工程学报, 2019, 55(15): 109-123. doi:10.3901/jme.2019.15.109
MO X J, GE W J, ZHAO D L, et al. Review: research status of miniature jumping robot[J]. Journal of Mechanical Engineering, 2019, 55(15): 109-123.
doi: 10.3901/jme.2019.15.109
[6] ZHANG C, ZOU W, MA L P, et al. Biologically inspired jumping robots: a comprehensive review[J]. Robotics and Autonomous Systems, 2020, 124: 103362.
[7] WANG W P, WANG Y J, FANG C, et al. Designing and analyzing for a bar linkage obstacle-surmounting robot with the same phase in all the wheels[J]. IOP Conference Series: Materials Science and Engineering, 2018, 382: 042062.
[8] 牛丽周, 丁亮, 高海波, 等. 软体足式机器人驱动、建模与仿真研究综述[J]. 机械工程学报, 2021, 57(19): 1-20. doi:10.3901/jme.2021.19.001
NIU L Z, DING L, GAO H B, et al. Review of actuation, modeling and simulation in soft-legged robot[J]. Journal of Mechanical Engineering, 2021, 57(19): 1-20.
doi: 10.3901/jme.2021.19.001
[9] CAO L J, KONG T G, ZHOU M. Research on structure design and control method of underwater exploration robot[J]. Procedia Computer Science, 2022, 208: 216-222.
[10] 孙俊凯, 孙泽洲, 辛鹏飞, 等. 深空着陆探测足式机器人发展综述[J]. 中国机械工程, 2021, 32(15): 1765-1775.
SUN J K, SUN Z Z, XIN P F, et al. Review on development of legged robots for deep space landing exploration[J]. China Mechanical Engineering, 2021, 32(15): 1765-1775.
[11] ARUNKUMAR V, RAJASEKAR D, AISHWARYA N. A review paper on mobile robots applications in search and rescue operations[J]. Advances in Science and Technology, 2023: 65-74.
[12] 侯英, 桂亚鹏, 王建暖. 救援机器人仿生造型设计[J]. 机械设计, 2019, 36(6): 145.
HOU Y, GUI Y P, WANG J N. Bionic modeling design of rescue robot[J]. Journal of Machine Design, 2019, 36(6): 145.
[13] CHEN W, CHENG H, ZHANG W C, et al. Modeling and invariably horizontal control for the parallel mobile rescue robot based on PSO-CPG algorithm[J]. Robotica, 2023, 41(11): 3501-3523.
[14] 王小涛, 张震, 崔宇新, 等. 月面六足机器人机构设计与行走控制方法综述[J]. 载人航天, 2023, 29(2): 264-275.
WANG X T, ZHANG Z, CUI Y X, et al. Review on mechanism design and walking control method of lunar hexapod robot[J]. Manned Spaceflight, 2023, 29(2): 264-275.
[15] 单东升, 何亚磊. 一种六足军用机器人行走机构的设计与优化[J]. 装甲兵工程学院学报, 2018(3): 72-76.
SHAN D S, HE Y L. Design and optimization of hexapod walking mechanism for military robot[J]. Journal of Academy of Armored Force Engineering, 2018(3): 72-76.
[16] HALDANE D W, PLECNIK M M, YIM J K, et al. Robotic vertical jumping agility via series-elastic power modulation[J]. Science Robotics, 2016, 1(1): eaag2048.
[17] KLEMM V, MORRA A, SALZMANN C, et al. Ascento: a two-wheeled jumping robot[C]//2019 International Conference on Robotics and Automation. New York: IEEE, 2019: 7515-7521.
[18] CHEN Y F, GAMBOA-GONZALEZ A, WEHNER M, et al. Explosive legged robotic hopping: energy accumulation and power amplification via pneumatic augmentation[EB/OL].(2023-12-10)[2024-10-08]. .
[19] 李静, 李贵, 孙伟, 等. 仿婴猴单腿弹跳机器人结构设计与实现[J]. 机械传动, 2023, 47(11): 43-48, 85.
LI J, LI G, SUN W, et al. Structural design and implementation of simulating galago senegalensis monkey single-leg jumping robots[J]. Journal of Mechanical Transmission, 2023, 47(11): 43-48, 85.
[20] 袁振宇. 仿猫跳跃机器人机构设计及仿真分析[D]. 沈阳: 沈阳工业大学, 2020.
YUAN Z Y. Mechanism design and simulation analysis of cat jumping robot[D]. Shenyang: Shenyang University of Technology, 2020.
[21] 高峰. 基于燃爆驱动的仿蛙软体跳跃机器人设计及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
GAO F. design and experiment of a frog-inspired soft jumping robot driven by combustion[D]. Harbin: Harbin Institute of Technology, 2021.
[1] 高伟,张玮,谷海涛,孟令帅,高浩,赵志超. 大型深海AUV无动力螺旋下潜运动特性分析[J]. 工程设计学报, 2022, 29(3): 370-383.
[2] 王君, 冯康瑞, 程群超, 李文涛, 汪泉. 计算机辅助Watt型平面六连杆机构分支自动识别[J]. 工程设计学报, 2019, 26(5): 497-505.
[3] 李磊, 肖世德, 董庆丰, 李兴坤. 一种大型球罐内部检修工作台的设计与分析[J]. 工程设计学报, 2018, 25(2): 131-141.
[4] 任云鹏, 张天侠, 陈希红, 张计磊, 张红军, 宋连国, 韩清凯, 闻邦椿. 基于虚拟样机技术的万吨压机锻造操作机的运动学仿真分析[J]. 工程设计学报, 2008, 15(2): 101-104.