多科学仿真与优化设计 |
|
|
|
|
动力电池材料—结构—性能跨尺度关联效应研究 |
张志1( ),张艳岗1( ),曹美文2,陈建军2,杨志强2,郭巨寿2 |
1.中北大学 能源与动力工程学院,山西 太原 030051 2.北方通用动力集团有限公司,山西 大同 037036 |
|
Study on material-structure-performance cross-scale correlation effect of power battery |
Zhi ZHANG1( ),Yangang ZHANG1( ),Meiwen CAO2,Jianjun CHEN2,Zhiqiang YANG2,Jushou GUO2 |
1.School of Energy and Power Engineering, North University of China, Taiyuan 030051, China 2.The North General Power Group Co. , Ltd. , Datong 037036, China |
引用本文:
张志,张艳岗,曹美文,陈建军,杨志强,郭巨寿. 动力电池材料—结构—性能跨尺度关联效应研究[J]. 工程设计学报, 2024, 31(1): 120-129.
Zhi ZHANG,Yangang ZHANG,Meiwen CAO,Jianjun CHEN,Zhiqiang YANG,Jushou GUO. Study on material-structure-performance cross-scale correlation effect of power battery[J]. Chinese Journal of Engineering Design, 2024, 31(1): 120-129.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.303
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/120
|
1 |
TAN Q B, WANG Z N, FAN W, et al. Development path and model design of a new energy vehicle in China [J]. Energies, 2023, 16(1): 220. doi:10.3390/en16010220 .
doi: 10.3390/en16010220
|
2 |
王震坡, 詹炜鹏, 孙逢春, 等. 新能源汽车碳减排潜力分析[J]. 北京理工大学学报, 2024,44(2):111-122. WANG Z P, ZHAN W P, SUN F C, et al. Analysis of carbon emission reduction potential of new energy vehicles [J]. Transactions of Beijing Institute of Technology, 2024, 44(2): 111-122.
|
3 |
QIN S F, XIONG Y Q. Differential impact of subsidised and nonsubsidized policies on the innovation of new energy vehicle enterprises: Evidence from China[J]. Asian Journal of Technology Innovation, 2022, 31(2): 260-283.
|
4 |
舒强, 王艺帆, 梁元. 我国电动汽车动力电池安全标准现状及展望[J]. 汽车工程, 2022, 44(11): 1706-1715. SHU Q, WANG Y F, LIANG Y. Current status and prospects of safety standards for electric vehicle power batteries in China [J]. Automotive Engineering, 2022, 44(11): 1706-1715.
|
5 |
杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254. YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density characteristics of lithium-ion power batteries[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254.
|
6 |
LEE Y K, LEE U, KANG N. Multi-scale design optimization of electric vehicles by analytical target cascading: From battery cell level to marketing level [J]. Journal of Cleaner Production, 2022, 368: 133235.
|
7 |
KLEMENS J, BURGER D, SCHNEIDER L, et al. Drying of compact and porous NCM cathode electrodes in different multilayer architectures: Influence of layer configuration and drying rate on electrode properties [J]. Energy Technology, 2023, 11(8): 2300267. doi:10.1002/ente.202300267 .
doi: 10.1002/ente.202300267
|
8 |
WANG Y Y, SUN S R, WU X L, et al. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators [J]. Nano-micro Letters, 2023, 15: 1-39.
|
9 |
ABDOLLAHIFAR M, CAVERS H, SCHEFFLER S, et al. Insights into influencing electrode calendering on the battery performance [J]. Advanced Energy Materials, 2023, 15(1): 2300973. doi:10.1007/s40820-023-01065-x .
doi: 10.1007/s40820-023-01065-x
|
10 |
YU S Y, XU C, MAO Y, et al. Heat generation mechanism and parameter sensitivity analysis of NCA-graphite battery based on electrochemical-thermal coupling model [J]. Journal of the Electrochemical Society, 2023, 170(6): 060514. doi:10.1149/1945-7111/acd8f7 .
doi: 10.1149/1945-7111/acd8f7
|
11 |
GHAEMINEZHAD N, MONFARED M. Charging control strategies for lithium-ion battery packs: Review and recent developments [J]. IET Power Electronics, 2022, 15(5): 349-367.
|
12 |
AZIMI V, ALLAM A, ONORI S. Extending life of lithium-ion battery systems by embracing heterogeneities via an optimal control-based active balancing strategy [J]. IEEE Transactions on Control Systems Technology, 2023, 31(3): 1235-1249.
|
13 |
张立玉, 路昭, 韦立川, 等. 锂电池性能与温度相关性的基础实验研究[J]. 西安交通大学学报, 2018, 52(5):133-141. doi:10.7652/xjtuxb201805019 ZHANG L Y, LU Z, WEI L C, et al. Basic experimental study on the correlation between lithium battery performance and temperature [J]. Journal of Xi'an Jiaotong University, 2018, 52(5): 133-141.
doi: 10.7652/xjtuxb201805019
|
14 |
徐乐, 邓忠伟, 谢翌, 等. 锂离子电池高精度机理建模、参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022,58(22):19-36. XU L, DENG Z W, XIE Y, et al. Research progress in high-precision mechanism modeling, parameter identification, and life prediction of lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(22): 19-36.
|
15 |
程昀, 李劼, 贾明, 等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报,2015,64(21): 145-160. doi:10.7498/aps.64.210202 CHENG Y, LI J, JIA M, et al. Application status and future of multi-scale numerical models for lithium ion battery [J]. Acta Physica Sinica, 2015, 64(21): 145-160.
doi: 10.7498/aps.64.210202
|
16 |
LE H J, KRAMER D. Physics based modelling of porous lithium ion battery electrodes-a review [J]. Energy Reports, 2020, 6(5): 1-9.
|
17 |
匡柯, 孙跃东, 任东生, 等. 车用锂离子电池电化学-热耦合高效建模方法[J]. 机械工程学报,2021,57(14): 10-22. KUANG K, SUN Y D, REN D S, et al. Efficient modeling method for electrochemical thermal coupling of automotive lithium-ion batteries [J]. Journal of Mechanical Engineering, 2021, 57(14): 10-22.
|
18 |
梁新成, 张志冬, 黄国钧. 锂电池的电化学建模研究[J].西南大学学报(自然科学版),2023,45(3): 214-221. LIANG X C, ZHANG Z D, HUANG G J. Research on electrochemical modeling of lithium batteries [J]. Journal of Southwest University(Natural Science Edition), 2023, 45(3): 214-221.
|
19 |
LIU Y, TANG S, LI L, et al. Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery [J]. Journal of Alloys and Compounds, 2020, 844: 156003.
|
20 |
张艳岗, 郭旭旭, 薛文阳, 等. 锂离子动力电池系统多尺度热安全研究[J]. 北京航空航天大学学报, 2023, 49(1): 31-44. ZHANG Y G, GUO X X, XUE W Y, et al. Multi scale thermal safety study of lithium-ion power battery systems [J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 31-44.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|