Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (1): 120-129    DOI: 10.3785/j.issn.1006-754X.2024.03.303
多科学仿真与优化设计     
动力电池材料—结构—性能跨尺度关联效应研究
张志1(),张艳岗1(),曹美文2,陈建军2,杨志强2,郭巨寿2
1.中北大学 能源与动力工程学院,山西 太原 030051
2.北方通用动力集团有限公司,山西 大同 037036
Study on material-structure-performance cross-scale correlation effect of power battery
Zhi ZHANG1(),Yangang ZHANG1(),Meiwen CAO2,Jianjun CHEN2,Zhiqiang YANG2,Jushou GUO2
1.School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
2.The North General Power Group Co. , Ltd. , Datong 037036, China
 全文: PDF(4287 KB)   HTML
摘要:

动力电池是新能源汽车的核心部件,其电化学性能和热性能是决定新能源汽车能否规模化推广应用的关键,然而宏观尺度下的电化学性能和热性能既受到微观尺度下的电极材料特性的影响,又受到介观尺度下的电池结构参数的影响。为了揭示电池材料参数、电极结构参数和电池工作参数对动力电池性能的影响机理,以18650型镍钴锰三元动力电池锂为研究对象,通过构建电池电化学-热耦合模型,分别探究了上述各参数对动力电池电化学性能和热性能的影响规律,综合分析了电池材料—结构—性能跨尺度关联效应。研究结果表明:电池材料参数、电极结构参数、电池工作参数对动力电池性能的影响具有跨尺度强相关的特征。单一尺度下的动力电池设计及性能优化并不能得到最优结果,开展材料—结构—性能跨尺度设计及优化是动力电池安全性能和动力性能提升的根本途径。

关键词: 动力电池电化学-热耦合模型跨尺度关联电化学性能热性能    
Abstract:

Power battery is the core component of new energy vehicle, and its electrochemical and thermal performances are the key to the large-scale promotion and application of new energy vehicle. However, the electrochemical and thermal performances at the macro scale are affected not only by the electrode material characteristics at the micro scale, but also by the battery structural parameters at the mesoscale. In order to reveal the influence mechanism of battery material parameters, electrode structure parameters and battery working parameters on the performance of power battery, taking 18650 nickel-cobalt-manganese ternary power battery lithium as the research object, the influence law of the above parameters on the electrochemical and thermal performances of power battery was explored by constructing the battery electrochemical-thermal coupling model. The material-structure-performance cross-scale correlation effect of power battery was analyzed comprehensively. The results showedt hat the effects of battery material parameters, electrode structural parameters and battery working parameters on the performances of power battery had the characteristic of strong cross-scale correlation.The design and performance optimization of power battery at a single scale can not achieve optimal results, and the material-structure-performance cross-scale design and optimization is the fundamental way to improve the safety and dynamic performances of power battery.

Key words: power battery    electrochemical-thermal coupling model    cross scale correlation    electrochemical performance    thermal performance
收稿日期: 2023-10-28 出版日期: 2024-03-04
CLC:  TM 912  
通讯作者: 张艳岗     E-mail: 1187080251@qq.com;zyg31124@163.com
作者简介: 张 志(1991—),男,山西太原人,硕士生,从事动力电池性能估算研究,E-mail: 1187080251@qq.com,https://orcid.org/0009-0008-5455-2464
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张志
张艳岗
曹美文
陈建军
杨志强
郭巨寿

引用本文:

张志,张艳岗,曹美文,陈建军,杨志强,郭巨寿. 动力电池材料—结构—性能跨尺度关联效应研究[J]. 工程设计学报, 2024, 31(1): 120-129.

Zhi ZHANG,Yangang ZHANG,Meiwen CAO,Jianjun CHEN,Zhiqiang YANG,Jushou GUO. Study on material-structure-performance cross-scale correlation effect of power battery[J]. Chinese Journal of Engineering Design, 2024, 31(1): 120-129.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.303        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/120

图1  锂离子电池一维电化学模型
名称单位负集流体负极隔膜正极正集流体
长度mm768165312
活性物质粒径μm5.32.4
初始锂离子浓度mol/m316 14030 760
最大锂离子浓度mol/m334 19047 910
固相体积分数0.430.50.58
液相体积分数0.3360.540.28
固相电导率S/m3.87×1070.11005.98×107
传递系数0.50.5
液相锂浓度mol/m31 0001 0001 000
反应速率m/s1×10-111×10-11
传递数0.3630.3630.363
表1  动力电池电化学模型参数
名称单位铜箔铝箔正极活性物质负极活性物质电解液
导热系数W/m33952451.041.580.53
比热容J/(kg·m3)3809001 0981 405.6650
密度kg/m38 9302 7002 4502 6601 200
表2  动力电池热模型参数
图2  动力电池放电电压实验值与仿真值的对比
图3  动力电池测温点位置示意
图4  不同测温点温度实验值与仿真值的对比
测温点最大绝对误差/℃最大相对误差/%
T10.502.60
T20.352.89
T30.211.60
T40.181.60
T50.292.36
表3  不同测温点温度实验值与仿真值之间的最大误差
图5  不同放电倍率下电极固相锂离子浓度分布规律
图6  不同放电倍率下电极液相锂离子浓度分布规律
图7  不同正负极粒径下动力电池放电电压变化曲线
图8  不同初始电解质浓度下动力电池放电电压变化曲线
图9  不同动力电池径向密度和径向热容下电池温度变化曲线
图10  不同正负极长度下动力电池放电电压变化曲线
图11  不同正负极长度下动力电池温度变化曲线
图12  不同隔膜长度下动力电池放电电压变化曲线
图13  不同正负极反应速率下动力电池放电电压变化曲线
图14  不同正负极扩散系数下动力电池放电电压变化曲线
图15  不同放电倍率下动力电池放电电压及其组件热量变化曲线
图16  不同环境温度下锂离子浓度变化曲线和动力电池放电电压变化曲线
尺度参数电压U容量C温度T

正极长度↓↓↓
负极长度↑末段↑↑↑↓↓
膈膜长度↑高倍率↓轻微↑

正极粒径↓
负极粒径↓末段↑

初始电解质浓度

(一定范围内↑)

径向热容↑↓↓
径向密度↑初段↓

正负极反应速率常数↑
负极扩散系数↑
正极扩散系数↑无影响无影响
放电倍率↑↓↓↑↑

环境温度↑

环境温度↓

↓↓

↓↓

↑↑

↑↑

表4  动力电池参数与性能的跨尺度关联效应
图17  动力电池材料—结构—性能跨尺度关联路径与方式
1 TAN Q B, WANG Z N, FAN W, et al. Development path and model design of a new energy vehicle in China [J]. Energies, 2023, 16(1): 220. doi:10.3390/en16010220 .
doi: 10.3390/en16010220
2 王震坡, 詹炜鹏, 孙逢春, 等. 新能源汽车碳减排潜力分析[J]. 北京理工大学学报, 2024,44(2):111-122.
WANG Z P, ZHAN W P, SUN F C, et al. Analysis of carbon emission reduction potential of new energy vehicles [J]. Transactions of Beijing Institute of Technology, 2024, 44(2): 111-122.
3 QIN S F, XIONG Y Q. Differential impact of subsidised and nonsubsidized policies on the innovation of new energy vehicle enterprises: Evidence from China[J]. Asian Journal of Technology Innovation, 2022, 31(2): 260-283.
4 舒强, 王艺帆, 梁元. 我国电动汽车动力电池安全标准现状及展望[J]. 汽车工程, 2022, 44(11): 1706-1715.
SHU Q, WANG Y F, LIANG Y. Current status and prospects of safety standards for electric vehicle power batteries in China [J]. Automotive Engineering, 2022, 44(11): 1706-1715.
5 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254.
YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density characteristics of lithium-ion power batteries[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254.
6 LEE Y K, LEE U, KANG N. Multi-scale design optimization of electric vehicles by analytical target cascading: From battery cell level to marketing level [J]. Journal of Cleaner Production, 2022, 368: 133235.
7 KLEMENS J, BURGER D, SCHNEIDER L, et al. Drying of compact and porous NCM cathode electrodes in different multilayer architectures: Influence of layer configuration and drying rate on electrode properties [J]. Energy Technology, 2023, 11(8): 2300267. doi:10.1002/ente.202300267 .
doi: 10.1002/ente.202300267
8 WANG Y Y, SUN S R, WU X L, et al. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators [J]. Nano-micro Letters, 2023, 15: 1-39.
9 ABDOLLAHIFAR M, CAVERS H, SCHEFFLER S, et al. Insights into influencing electrode calendering on the battery performance [J]. Advanced Energy Materials, 2023, 15(1): 2300973. doi:10.1007/s40820-023-01065-x .
doi: 10.1007/s40820-023-01065-x
10 YU S Y, XU C, MAO Y, et al. Heat generation mechanism and parameter sensitivity analysis of NCA-graphite battery based on electrochemical-thermal coupling model [J]. Journal of the Electrochemical Society, 2023, 170(6): 060514. doi:10.1149/1945-7111/acd8f7 .
doi: 10.1149/1945-7111/acd8f7
11 GHAEMINEZHAD N, MONFARED M. Charging control strategies for lithium-ion battery packs: Review and recent developments [J]. IET Power Electronics, 2022, 15(5): 349-367.
12 AZIMI V, ALLAM A, ONORI S. Extending life of lithium-ion battery systems by embracing heterogeneities via an optimal control-based active balancing strategy [J]. IEEE Transactions on Control Systems Technology, 2023, 31(3): 1235-1249.
13 张立玉, 路昭, 韦立川, 等. 锂电池性能与温度相关性的基础实验研究[J]. 西安交通大学学报, 2018, 52(5):133-141. doi:10.7652/xjtuxb201805019
ZHANG L Y, LU Z, WEI L C, et al. Basic experimental study on the correlation between lithium battery performance and temperature [J]. Journal of Xi'an Jiaotong University, 2018, 52(5): 133-141.
doi: 10.7652/xjtuxb201805019
14 徐乐, 邓忠伟, 谢翌, 等. 锂离子电池高精度机理建模、参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022,58(22):19-36.
XU L, DENG Z W, XIE Y, et al. Research progress in high-precision mechanism modeling, parameter identification, and life prediction of lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(22): 19-36.
15 程昀, 李劼, 贾明, 等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报,2015,64(21): 145-160. doi:10.7498/aps.64.210202
CHENG Y, LI J, JIA M, et al. Application status and future of multi-scale numerical models for lithium ion battery [J]. Acta Physica Sinica, 2015, 64(21): 145-160.
doi: 10.7498/aps.64.210202
16 LE H J, KRAMER D. Physics based modelling of porous lithium ion battery electrodes-a review [J]. Energy Reports, 2020, 6(5): 1-9.
17 匡柯, 孙跃东, 任东生, 等. 车用锂离子电池电化学-热耦合高效建模方法[J]. 机械工程学报,2021,57(14): 10-22.
KUANG K, SUN Y D, REN D S, et al. Efficient modeling method for electrochemical thermal coupling of automotive lithium-ion batteries [J]. Journal of Mechanical Engineering, 2021, 57(14): 10-22.
18 梁新成, 张志冬, 黄国钧. 锂电池的电化学建模研究[J].西南大学学报(自然科学版),2023,45(3): 214-221.
LIANG X C, ZHANG Z D, HUANG G J. Research on electrochemical modeling of lithium batteries [J]. Journal of Southwest University(Natural Science Edition), 2023, 45(3): 214-221.
19 LIU Y, TANG S, LI L, et al. Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery [J]. Journal of Alloys and Compounds, 2020, 844: 156003.
20 张艳岗, 郭旭旭, 薛文阳, 等. 锂离子动力电池系统多尺度热安全研究[J]. 北京航空航天大学学报, 2023, 49(1): 31-44.
ZHANG Y G, GUO X X, XUE W Y, et al. Multi scale thermal safety study of lithium-ion power battery systems [J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 31-44.
[1] 李典伦, 黄华, 邓文强. 数控机床液体静压导轨结构的优化设计[J]. 工程设计学报, 2020, 27(4): 448-455.