Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (4): 488-494    DOI: 10.3785/j.issn.1006-754X.2018.04.017
整机和系统设计     
履带牵引式换带装置液压系统动态特性研究
王松岩1,2, 李超宇1,2, 徐浩1,2
1. 太原理工大学 机械工程学院, 山西 太原 030024;
2. 山西省矿山流体控制工程技术研究中心, 山西 太原 030024
Research on hydraulic system dynamic characteristics of crawler traction tape replacing device
WANG Song-yan1,2, LI Chao-yu1,2, XU Hao1,2
1. College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Shanxi Provincial Engineering Research Center for Mine Fluid Control Technology, Taiyuan 030024, China
 全文: PDF(2736 KB)   HTML
摘要:

履带牵引式换带装置是一种矿井带式输送机胶带更换装置,为了解其液压系统的动态特性,应用Automation Studio软件对换带装置液压系统进行建模与仿真。在换带装置拉带速度仿真分析中,获得了在30,35,40,45,50 mL/r排量下液压马达的输入流量、转速仿真曲线以及履带底盘的拉带速度。通过对换带装置夹带速度的仿真,说明其液压缸夹紧与松开的时间差异并分析其原因。防溜带机构夹带速度的仿真表明该机构可在0.2 s内夹紧胶带。工业性试验中通过PLC(programmable logic controller,可编程逻辑控制器)采集现场液压系统压力并和仿真压力对比分析。夹带恒压自适应调节保证了在胶带厚度变化的情况下系统压力仍然能保持稳定。自动锁带油缸压力迅速变化确保了胶带更换作业安全进行。结果表明该装置系统响应速度较快,性能稳定,为履带牵引式换带装置的动力和安全性能提供了保障。

关键词: 履带牵引胶带更换恒压调节液压系统Automation Studio    
Abstract:

Crawler traction tape replacing device is a new type of belt replacing device for mine belt conveyors. The hydraulic system of crawler traction replacing device was designed and simulated by using Automation Studio software in order to understand its dynamic characteristics. After the simulation and the analysis of the drawing speed of the tape replacing device, the input flow curve, speed curve of the hydraulic motor and the drawing speed of the crawler chassis were obtained with displacement of 30, 35, 40, 45, 50 mL/r. Through the simulation of the entrainment speed of the tape replacing device, the time difference between the clamping and releasing of the hydraulic cylinder was explained and the reason was analyzed. The simulation of the entrainment speed of the anti-roll mechanism showed that the mechanism could clamp the tape within 0.2 s. In the industrial test, the pressure of the on-site hydraulic system was collected by PLC (programmable logic controller) and compared with the simulation pressure. Entrainment with constant pressure self-adjusting ensured that the system pressure remained stable even if the tape thickness was changed. Automatic lock cylinder pressure changed quickly to ensure safe tape replacement. The results show that the device has a fast response speed and stable performance, which provide a guarantee for the power and safety performance of the crawler traction tape replacing device.

Key words: crawler traction    tape replacement    constant pressure regulation    hydraulic system    Automation Studio
收稿日期: 2018-04-02 出版日期: 2018-08-28
CLC:  TD528  
基金资助:

山西省重点研发计划资助项目(201603D121001-0)

作者简介: 王松岩(1992-),男,山西忻州人,硕士生,从事液压技术研究,E-mail:wsy1816314833@126.com,https://orcid.org/0000-0002-8138-2375
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王松岩
李超宇
徐浩

引用本文:

王松岩, 李超宇, 徐浩. 履带牵引式换带装置液压系统动态特性研究[J]. 工程设计学报, 2018, 25(4): 488-494.

WANG Song-yan, LI Chao-yu, XU Hao. Research on hydraulic system dynamic characteristics of crawler traction tape replacing device[J]. Chinese Journal of Engineering Design, 2018, 25(4): 488-494.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.04.017        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I4/488

[1] 赵靖.带式输送机快速换带装置的研究[D].太原:太原理工大学机械工程学院,2014:2-7. ZHAO Jing. Research on quick transfer device of belt conveyor[D]. Taiyuan:Taiyuan University of Technology, College of Mechanical Engineering, 2014:2-7.
[2] 杨涛.带式输送机连续换带装置研究[D].太原:太原理工大学机械工程学院,2014:3-5. YANG Tao. Research on continuous replacing device of belt conveyor[D]. Taiyuan:Taiyuan University of Technology, College of Mechanical Engineering, 2015:3-5.
[3] 赵亮吉.履带牵引连续换带装置的研究[D].太原:太原理工大学机械工程学院,2017:2-6. ZHAO Liang-ji. Research on tape changing continuously device for crawler[D]. Taiyuan:Taiyuan University of Technology, College of Mechanical Engineering, 2017:2-6.
[4] 高路路,马飞,刘玉超.基于Automation Studio的双吊点式液压启闭机液压系统仿真分析[J].机床与液压,2017,45(20):75-78. GAO Lu-lu, MA Fei, LIU Yu-chao. Simulation of hydraulic system for two lifting points hydraulic hoist based on Automation Studio[J]. Machine Tool & Hydraulics, 2017, 45(20):75-78.
[5] 曹贺,郭竟男,宋广彬.Automation Studio在液压系统设计中的应用[J].机床与液压,2010,38(18):53-55. CAO He, GUO Jing-nan, SONG Guang-bin. Application of Automation Studio in hydraulic system design[J]. Machine Tools & Hydraulics, 2010, 38(18):53-55
[6] 张文蔚.基于Automation Studio软件的自动化实践教学平台开发[J].自动化应用,2014(9):66-67. ZHANG Wen-wei. Development of automation practice teaching platform based on Automation Studio software[J]. Automation Application, 2014(9):66-67.
[7] 吴亚锋,郭军.基于AMESim的飞机液压系统仿真技术的应用研究[J].沈阳工业大学学报,2007,29(4):368-371. WU Ya-feng, GUO Jun. Research on simulation technique based on AMESim for aircraft hydraulic system[J]. Journal of Shenyang University of Technology, 2007, 29(4):368-371.
[8] 胡均平,袁柱,李科军,等.新型打桩锤电液控制系统研究[J].工程设计学报,2018,25(1):103-109. HU Jun-ping, YUAN Zhu, LI Ke-jun, et al. Research on electro-hydraulic control system for new pile hammer[J]. Chinese Journal of Engineering Design, 2018, 25(1):103-109.
[9] 卫进,常涛柱,杨涛.基于AMESim多工位回转工作台液压系统仿真研究[J].液压与气动,2014(4):41-44. WEI Jin, CHANG Tao-zhu, YANG Tao. Simulation of hydraulic system based on AMESim for multi-station rotary table[J]. Chinese Hydraulics & Pneumatics, 2014(4):41-44.
[10] 成梦圆,张春雷.基于AMESim的盘形制动器液压仿真研究[J].煤矿机械,2014,35(11):75-77. CHENG Meng-yuan, ZHANG Chun-lei. Research on hydraulic simulation of disc brake based on AMESim[J]. Coal Mining Machinery, 2014, 35(11):75-77.
[11] 赵靖,寇子明,樊鹏,等.基于AMESim的带式输送机换带装置液压系统仿真研究[J].液压与气动,2014(12):91-95,99. ZHAO Jing, KOU Zi-ming, FAN Peng, et al. Research on hydraulic system of quick belt conveyor transfer device based on AMESim[J]. Chinese Hydraulics & Pneumatics, 2014(12):91-95, 99.
[12] 姜友山,邹广德.全液压推土机液压马达选型研究[J].建筑机械化,2009,30(9):45-48,7. JIANG You-shan, ZOU Guang-de. Choice research of hydraulic motor of full hydraulic bulldozer[J]. Construction Mechanization, 2009, 30(9):45-48, 7.
[13] 刘世龙,史青录,刘成,等.正铲液压挖掘机水平推压作业时液压缸流量特性研究[J].矿山机械,2017,45(6):21-24. LIU Shi-long, SHI Qing-lu, LIU Cheng, et al. Research on flow characteristics of cylinders during horizontal pushing operation of forward hydraulic excavator[J]. Mining Machinery, 2017, 45(6):21-24.
[14] 魏静.基于SW/Simulation制动闸碟形弹簧的受力分析[J].煤矿现代化,2013(4):90-91. WEI Jing. Force analysis of butterfly spring based on SW/Simulation[J]. Coal Mine Modernization, 2013(4):90-91.
[15] 孙利民,王晓波,施力.组合碟簧的刚度研究[J].郑州大学学报(工学版),2007,28(3):117-120,124. SUN Li-min, WANG Xiao-bo, SHI Li. Study on the stiffness of the disc spring[J]. Journal of Zhengzhou University (Engineering Science), 2007, 28(3):117-120, 124.
[16] 赵多兴.基于PLC的步进梁液压监控系统设计[J].农机使用与维修,2014(10):20-21. ZHAO Duo-xing. Design of hydraulic monitoring system for walking beam based on PLC[J]. Agricultural Mechanization Using & Maintenance, 2014(10):20-21.
[17] 王文.液压波动激振系统动态特性研究[D].太原:太原理工大学机械工程学院,2009:18-23. WANG Wen. Research on dynamic characteristics of hydraulic wave exciter system[D]. Taiyuan:Taiyuan University of Technology, College of Mechanical Engineering, 2009:18-23.
[1] 王志力, 朱廷忠, 陈智勇, 席波, 贾小平. 贯流式水轮机调速器的机械结构和液压系统设计[J]. 工程设计学报, 2020, 27(6): 753-764.
[2] 陈昭明, 徐泽宇, 邹劲松, 赵迎, 石明全. 隧道施工多功能铺设台车液压系统设计及其响应特征分析[J]. 工程设计学报, 2019, 26(1): 116-122.
[3] 吴中义, 陈家兑, 王自勤. 一种液压式连续可变压缩比技术的研究[J]. 工程设计学报, 2018, 25(2): 142-150.
[4] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 324-329.
[5] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(4): 324-329.
[6] 杨忠炯,鲁耀中,周立强,李洪宾. 基础振动下TBM推进液压系统工作特性研究[J]. 工程设计学报, 2015, 22(3): 278-283.
[7] 朱茂桃,沈登峰,梁艳春,汪东坪,张彤. 混联式混合动力变速器液压系统控制策略设计[J]. 工程设计学报, 2014, 21(5): 469-475.
[8] 周鸿彬,龚国芳,王林涛,吴伟强. ¢1.2 m缩尺实验盾构机械结构与液压系统设计[J]. 工程设计学报, 2014, 21(2): 185-190.
[9] 刘国斌, 龚国芳, 朱北斗, 施 虎. 基于BP神经网络的盾构推进速度自适应PID控制[J]. 工程设计学报, 2010, 17(6): 454-458.
[10] 刘会勇, 李伟, 彭秀英, 胡园, 赵青. 混凝土泵车臂架液压系统建模与仿真研究[J]. 工程设计学报, 2010, 17(4): 253-257.
[11] 贾利国, 黄琪. 无级变速传动液压系统设计及仿真分析[J]. 工程设计学报, 2006, 13(3): 166-169.
[12] 张齐生, 赵静一, 黄宴委, 张晓东. 新型压滤机液压控制系统的研制[J]. 工程设计学报, 2002, 9(4): 225-228.
[13] 高峰, 冯培恩, 高宇. 挖掘机器人柔性液压系统的方案设计[J]. 工程设计学报, 2001, 8(3): 105-108.