Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (4): 472-480    DOI: 10.3785/j.issn.1006-754X.2018.04.015
整机和系统设计     
精密机床差异化温控系统设计方法与控制策略研究
郑英杰1,2, 牛兴华1,2, 高卫国3, 张大卫3, 刘腾4
1. 天津理工大学 机械工程学院 天津市先进机电系统设计与智能控制重点实验室, 天津 300384;
2. 天津理工大学 机电工程国家级实验教学示范中心, 天津 300384;
3. 天津大学 机械工程学院 教育部机构理论与装备设计重点实验室, 天津 300354;
4. 河北工业大学 机械工程学院, 天津 300130
Study on design method and control strategy of differential temperature control system for precision machine tools
ZHENG Ying-jie1,2, NIU Xing-hua1,2, GAO Wei-guo3, ZHANG Da-wei3, LIU Teng4
1. School of Mechanical Engineering, Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China;
2. National Experimental Teaching Demonstration Center for Mechanical and Electrical Engineering, Tianjin University of Technology, Tianjin 300384, China;
3. School of Mechanical Engineering, Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300354, China;
4. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
 全文: PDF(5731 KB)   HTML
摘要:

为满足变工况和环境温度波动条件下精密机床各部位对温控系统的动态、差异化控制需求,提出一种精密机床差异化温控系统的设计方法和控制策略。首先,提出了差异化温控系统关键功能部件选型设计方法和温控能力主参数计算方法;其次,根据差异化温控系统高/低温油箱中油温测量值与目标值的差别,形成对两油箱温度的动态实时控制策略;再次,采用MATLAB软件开发出温控系统关键部件的选型设计模块和高/低温油箱温度控制仿真分析模块;最后,通过仿真模拟获取相关温度数据,并与同工况下的实验数据进行对比分析,验证所提出的差异化温控系统设计方法及控制策略的可行性和合理性。结果表明仿真分析模块可以较为切实地反映出实际工况下的温度整体变化情况和趋势。所提出的精密机床差异化温控系统的设计方法和控制策略具备一定的合理性和可行性,且具有较高的工程应用价值。

关键词: 差异化温控系统设计方法控制策略MATLAB编程    
Abstract:

In order to satisfy dynamic and differentiated control requirements of temperature control system for precision machine tools related parts in the condition of changing running performance and fluctuating ambient temperature, the design methods and control strategy of differentiated temperature control system for precision machine tools were provided. Firstly, the method of selecting and designing the key parts of the system and computational method of main parameters of temperature control capability were given. Secondly, dynamic on-time matching strategies for high and low temperature oil tank temperature control were proposed, according to the differences between the target temperature and measured temperature of high temperature oil tank and low temperature oil tank independently. Besides, design module for selection and computing of differentiated temperature control system as well as temperature control simulation module for high and low temperature oil tank, were developed based on MATLAB software. Finally, the rationality and feasibility of simulation module were verified by the experimental data, gathering the temperature data in actual situations and comparing the simulation data with the actual data. The examples illustrated that the design methods and control strategies were of reasonableness. The results of contrast showed that the overall situation and trend of the temperature under the actual condition can be reflected by control simulation module. The proposed design method and control strategy for differentiated temperature control system have certain feasibility and rationality, as well as higher engineering application values.

Key words: differentiation    temperature control system    design method    control strategy    MATLAB programming
收稿日期: 2017-11-03 出版日期: 2018-08-28
CLC:  TH122  
基金资助:

国家科技重大专项(2015ZX04005-001);国家自然科学基金资助项目(51775375);天津市自然科学基金资助项目(17JCZDJC40300);河北省自然科学基金青年项目(E2017202194);河北省普通高等学校青年拔尖人才计划项目(BJ2017039)

作者简介: 郑英杰(1993-),男,天津人,硕士生,从事机床设计理论与方法研究,E-mail:1048819473@qq.com,https://orcid.org/0000-0001-7114-5416通信联系人:高卫国(1974-),男,河南济源人,副教授,博士,从事先进机械装备及加工技术等研究,E-mail:gaowg@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑英杰
牛兴华
高卫国
张大卫
刘腾

引用本文:

郑英杰, 牛兴华, 高卫国, 张大卫, 刘腾. 精密机床差异化温控系统设计方法与控制策略研究[J]. 工程设计学报, 2018, 25(4): 472-480.

ZHENG Ying-jie, NIU Xing-hua, GAO Wei-guo, ZHANG Da-wei, LIU Teng. Study on design method and control strategy of differential temperature control system for precision machine tools[J]. Chinese Journal of Engineering Design, 2018, 25(4): 472-480.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.04.015        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I4/472

[1] 谢钦.专用的制冷系统计算软件设计[J].流体机械,2013,41(4):75-80. XIE Qin. The special calculation software design of refrigeration system[J]. Fluid Machinery, 2013, 41(4):75-80.
[2] 徐周璇.单级蒸气压缩式制冷系统的仿真与实验研究[D].保定:华北电力大学(河北)能源动力与机械工程学院,2009:18-24. XU Zhou-xuan. Simulation and experiment on single stage vapor compression refrigeration system[D]. Baoding:North China Electric Power University (Hebei), School of Energy Power and Mechanical Engineering, 2009:18-24.
[3] 杨亮.基于仿真的制冷系统稳健设计方法研究[D].上海:上海交通大学机械与动力工程学院,2012:18-35. YANG Liang. Model-based robust design method of refrigeration system[D]. Shanghai:Shanghai Jiaotong University, School of Mechanical Engineering, 2012:18-35.
[4] SUKRI M F, MUSA M N, SENAWI M Y, et al. Achieving a better energy-efficient automotive air-conditioning system:a review of potential technologies and strategies for vapor compression refrigeration cycle[J]. Energy Efficiency, 2015, 8(6):1201-1229.
[5] TSAI Ching-chih, LIN Shui-chun, WANG Tai-yu, et al. Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process[J]. Control Engineering Practice, 2009, 17(2):302-310.
[6] TIZZEI A, MENEGHETTI C R, CAPPELLI N L, et al. System for studies of control strategies applied in the refrigerated chambers[J]. Engenharia Agrícola, 2011, 31(5):868-878.
[7] 张涵.压缩式制冷系统的内模控制策略研究[D].天津:天津大学电气自动化与信息工程学院,2014:25-41. ZHANG Han. Research on internal model control strategy of compression refrigerating system[D]. Tianjin:Tianjin University, School of Electrical and Information Engineering, 2014:25-41.
[8] 李庚.压缩式制冷机组变参数控制及工作点优化[D].天津:天津大学电气自动化与信息工程学院,2016:43-53. LI Geng. Variable parameter control and working point optimization of the compression refrigeration[D]. Tianjin:Tianjin University, School of Electrical and Information Engineering, 2016:43-53.
[9] YIN Xiao-hong, WANG Xin-li, LI Shao-yuan, et al. Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems[J]. Energy, 2016, 116:1006-1019.
[1] 杨杰,彭壮壮,王世杰,马聪,王龙,段国林. 陶瓷浆料3D打印机挤压力模糊神经网络PID稳定控制研究[J]. 工程设计学报, 2023, 30(1): 65-72.
[2] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[3] 任雯, 赖森财. 压电式提花经编机自升压节能控制电路设计[J]. 工程设计学报, 2020, 27(3): 326-331.
[4] 李克明, 彭文珠, 张泽坤, 顾超华, 徐平. 内压椭圆形封头设计方法比较研究[J]. 工程设计学报, 2019, 26(1): 1-7,28.
[5] 钱锦远, 金志江. 含阻系统分析方法及其在先导式截止阀阀芯小孔设计中的应用[J]. 工程设计学报, 2017, 24(5): 496-502,517.
[6] 王莉, 张士兵. 基于CPSO-BP神经网络-PID的热熔胶机温控系统研究[J]. 工程设计学报, 2017, 24(5): 588-594.
[7] 王波, GEA Haechang, 白俊强, 张玉东, 宫建, 张卫民. 基于Stochastic Kriging模型的不确定性序贯试验设计方法[J]. 工程设计学报, 2016, 23(6): 530-536.
[8] 朱茂桃,沈登峰,梁艳春,汪东坪,张彤. 混联式混合动力变速器液压系统控制策略设计[J]. 工程设计学报, 2014, 21(5): 469-475.
[9] 王红涛, 竺晓程, 杜朝辉. 基于Kriging代理模型的改进EGO算法研究[J]. 工程设计学报, 2009, 16(4): 266-270.
[10] 李勇智, 陈定方. 门座起重机的一种新型变幅系统及其设计方法[J]. 工程设计学报, 2006, 13(4): 232-235.
[11] 贾秋红, 廖林清, 郑拯宇, 杨翔宇, 邓斌. 摩托车零部件模糊可靠性设计方法的研究[J]. 工程设计学报, 2004, 11(5): 273-276.
[12] R.Anderl, M.Philipp, 桂贵生, 刘全坤. 设计学与产品数据技术——改进产品开发的潜能[J]. 工程设计学报, 2000, 7(2): 14-18.