Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (5): 496-502,517    DOI: 10.3785/j.issn.1006-754X.2017.05.002
设计理论与方法学     
含阻系统分析方法及其在先导式截止阀阀芯小孔设计中的应用
钱锦远1,2, 金志江1
1. 浙江大学 化工机械研究所, 浙江 杭州 310027;
2. 隆德大学 能源科学系, 瑞典 隆德 22100
Obstacle contained system (OCS) design method and its application in valve core orifice design of pilot-control globe valve
QIAN Jin-yuan1,2, JIN Zhi-jiang1
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China;
2. Department of Energy Sciences, Lund University, Lund 22100, Sweden
 全文: PDF(1543 KB)   HTML
摘要:

随着社会和时代的进步,复杂物理系统日益常见,传统的工程分析与设计方法面临着巨大挑战,因此,针对复杂物理系统的诸多参数,研究新的分析方法、提炼海量数据、指导工程分析与设计,显得尤为迫切。从系统分析方法角度,对弹簧滑块系统、直流电路系统、流场压降系统和平板传热热阻系统进行了阐述;对4种物理系统中的重要物理量进行了分析与归纳,提出了含阻系统的设想,其由阻元、过体和势头三个部分组成;在已经具有海量数据的基础上,含阻系统分析方法可通过确立物理系统中的阻元、过体和势头,建立阻元对势头的直接联系,简化物理问题,得到相对准确的结果。同时,采用含阻系统分析方法对先导式截止阀的阀芯设计进行了研究,结果表明,数值模拟和含阻系统分析方法得出的阀芯小孔处的压差和最大汽含率均在2%的误差范围内,这说明含阻系统分析方法可用于指导先导式截止阀阀芯小孔的设计。在海量数据积累的大数据时代,含阻系统分析方法可针对各种类型的复杂物理模型进行工程分析与设计,具有广阔的应用前景。

关键词: 含阻系统系统设计方法先导式截止阀压差最大汽含率    
Abstract:

With the development of the society and the times, traditional parametric design methods are witnessing a severe challenge due to the more and more complex physical systems. Thus, developing novel parametric analysis methods is very important for dealing with complex physical systems, refining useful parameters from numerous data, and proposing accurate prediction formulas. A spring slider system, a direct-current circuit system, a pipeline pressure drop system and a steady heat transfer model of flat plate system were described from the point of systemic parametric analysis method. Then, the key physical parameters in above four systems were summarized. Based on the comparative results, a novel systemic parametric design method, obstacle contained system (OCS) design method, was proposed. The OCS was made up of three elements:an obstacle element, a pass body element and a D-value element. With an abundant accurate data pole, the OCS design method could build the direct relationship of the obstacle element and the D-value element, which meant the simplification of the physical models and much easier to get relatively accurate results. Meanwhile, the design of pilot-control globe valve orifice was checked with both the OCS design method and the numerical simulation. The diameter of orifice on the valve core could influence the pressure difference and the maximum vapor rate inside pilot-control globe valves. Achieved by two different methods, the OCS design method and the numerical simulation, the results showed that the effects of orifice diameters on the pressure difference and the maximum vapor rate under different inlet velocities, were within 2% errors, which was reasonable and acceptable for the engineering application. In other words, the OCS design method was credible for parametric analysis. In future, the OCS design method has a broad application prospect to analyze various types of physical models especially in the era of big data.

Key words: obstacle contained system    system design method    pilot-control globe valve    pressure difference    maximum vapor rate
收稿日期: 2017-05-28 出版日期: 2017-10-28
CLC:  TH134  
基金资助:

浙江省自然科学基金重点项目(LZ17E050002);浙江省重点科技创新团队项目(2011R50005)

通讯作者: 金志江(1966-),男,浙江绍兴人,教授,博士生导师,博士,从事高效节能技术与绿色装备、极端工况下压力管道安全技术等研究,E-mail:jzj@zju.edu.cn,http://orcid.org/0000-0002-8063-709X     E-mail: jzj@zju.edu.cn
作者简介: 钱锦远(1988-),男,浙江慈溪人,博士后,从事高效节能装备的设计及其性能研究,E-mail:qianjy@zju.edu.cn,http://orcid.org/0000-0002-5438-0833
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钱锦远
金志江

引用本文:

钱锦远, 金志江. 含阻系统分析方法及其在先导式截止阀阀芯小孔设计中的应用[J]. 工程设计学报, 2017, 24(5): 496-502,517.

QIAN Jin-yuan, JIN Zhi-jiang. Obstacle contained system (OCS) design method and its application in valve core orifice design of pilot-control globe valve[J]. Chinese Journal of Engineering Design, 2017, 24(5): 496-502,517.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.05.002        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I5/496

[1] BUEDE D M, MILLER W D. The engineering design of systems:models and methods[M]. New Jersey:John Wiley & Sons, 2016:112-116.
[2] DENNIS A, WIXOM B H, TEGARDEN D. Systems analysis and design:an object-oriented approach with UML[M]. New Jersey:John Wiley & Sons, 2015:341-352.
[3] HAIK Y, SIVALOGANATHAN S, SHAHIN T M. Engineering design process[M]. Toronto:Nelson Education, 2015:42-59.
[4] PAHL G, BEITZ W. Engineering design:a systematic approach[M]. Berlin:Springer Science & Business Media, 2013:296-327.
[5] WASSON C S. System engineering analysis, design, and development:concepts, principles, and practices[M]. New Jersey:John Wiley & Sons, 2015:682-689.
[6] PIGGOTT A Y, LU J, LAGOUDAKIS K G, et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 2015, 9(6):374-377.
[7] LIM S, JEONG S, MIN S. Multi-component layout optimization method for the design of a permanent magnet actuator[J]. IEEE Transactions on Magnetics, 2016, 52(3):1-4.
[8] DILLMAN D A, SMYTH J D, CHRISTIAN L M. Internet, phone, mail, and mixed-mode surveys:the tailored design method[M]. New Jersey:John Wiley & Sons, 2014:221-245.
[9] WEI J, LÜ C, SUN W, et al. A study on optimum design method of gear transmission system for wind turbine[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(5):767-778.
[10] HERREMA A J, WIESE N M, DARLING C N, et al. A framework for parametric design optimization using isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 316:944-965.
[11] ANOCHIE-BOATENG J, MAINA J. Permanent deformation testing for a new South African mechanistic pavement design method[J]. Construction and Building Materials, 2012, 26(1):541-546.
[12] 陈永亮,韩瑶,刘谱,等.五辊式无溶剂涂布系统交叉耦合建模与设计方法[J].工程设计学报,2014,21(1):38-42. CHEN Yong-liang, HAN Yao, LIU Pu, et al. Mechatronic cross-coupling modeling and design method for five-rollers solventless coating system[J]. Chinese Journal of Engineering Design, 2014, 21(1):38-42.
[13] LAI X, ZHANG Y, WANG C. A new robust design method for path-generating linkages with multi-stochastic noises[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2015, 229(5):860-869.
[14] TAIBI A, TRABELSI M, SLIMANE A, et al. A novel design method for compact UWB bandpass filters[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(1):4-6.
[15] 梁松,李海波,张义民.基于C和gnuplot的渐开线齿轮辅助几何设计程序开发[J].工程设计学报,2014,21(1):80-86. LIANG Song, LI Hai-bo, ZHANG Yi-min, et al. Development of auxiliary geometric design software for involute gear based on the C and gnuplot[J]. Chinese Journal of Engineering Design, 2014, 21(1):80-86.
[16] 张坤,丁晓红,倪维宇,等.汽车座椅骨架构件布局设计方法[J].工程设计学报,2015,22(2):166-171. ZHANG Kun, DING Xiao-hong, NI Wei-yu, et al. The component layout design method for automotive seat skeleton[J]. Chinese Journal of Engineering Design, 2015, 22(2):166-171.
[17] 贾丽臻,刘伟,檀润华,等.基于生物-技术特征类比的产品概念设计方法研究[J].工程设计学报,2015,22(4):301-308. JIA Li-zhen, LIU Wei, TAN Run-hua, et al. Research on product conceptual design based on biological-technological characteristic analogy[J]. Chinese Journal of Engineering Design, 2015, 22(4):301-308.
[18] SONG J, GU C, REN X. Parametric design and off-design analysis of organic rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 112:157-165.
[19] 苏建宁,陈肖,张书涛,等.基于进化算法的产品造型创新设计方法研究[J].工程设计学报,2016,23(2):136-142. SU Jian-ning, CHEN Xiao, ZHANG Shu-tao, et al. Product styling innovative design method based on evolutionary algorithm[J]. Chinese Journal of Engineering Design, 2016, 23(2):136-142.
[20] 王克俭,汪廷飞.差速螺旋啮合双转子端面型线的统一几何设计及模拟[J].机械工程学报,2017,53(3):51-56. WANG Ke-jian, WANG Ting-fei. United geometrical design and simulation of sectional profiles for twin rotors in differential screw coupling[J]. Chinese Journal of Mechanical Engineering, 2017, 53(3):51-56.
[21] COULES H E, ORROCK P J, TRUMAN C E. Parametric design of scaled-down pressurised thermal shock test specimens using inelastic analysis[J]. Engineering Fracture Mechanics, 2017, 176:308-325.
[22] ELTAWEEL A, YUEHONG S U. Parametric design and daylighting:a literature review[J]. Renewable and Sustainable Energy Reviews, 2017, 73:1086-1103.
[23] 钱锦远.含阻系统中多孔板的流动分析及其工业应用研究[D].杭州:浙江大学化学工程与生物工程学院,2016:17-34. QIAN Jin-yuan. Fluid dynamic analysis on multi-stage perforated plate in obstacle contained system (OCS) and its typical industrial applications[D]. Hangzhou:Zhejiang University, College of Chemical and Biological Engineering, 2016:17-34.
[24] QIAN J, WEI L, JIN Z, et al. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve[J]. Energy Conversion and Management, 2014, 87:220-226.
[25] 钱锦远,朱银法,刘步展,等.垂直管线型先导式截止阀的阀芯运动过程数值分析[J].排灌机械工程学报,2016,34(1):51-56. QIAN Jin-yuan, ZHU Yin-fa, LIU Bu-zhan, et al.Transient simulation of valve core movement of pilot-control globe valve in vertical pipelines[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(1):51-56.
[26] QIAN J, LIU B, JIN Z, et al. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1):54-64.
[27] LIU B, WANG J, QIAN J, et al. Dynamic response analysis of pilot control globe valve focusing on opening and closing time of pilot valve[J]. Journal of Physics:Conference Series, 2016, 745(3):032046.
[28] QIAN J, LIU B, LEI L, et al. Effects of orifice on pressure difference in pilot-control globe valve by experimental and numerical methods[J]. International Journal of Hydrogen Energy, 2016, 41(41):18562-18570.
[29] QIAN J, GAO Z, WANG J, et al. Experimental and numerical analysis of spring stiffness on flow and valve core movement in pilot control globe valve[J]. Journal of Hydrogen Energy, 2017, 42(27):17192-17201.
[1] 万晓凤, 易其军, 雷继棠, 丁卯, 张燕飞. 动液面远程自动连续测量装置实现[J]. 工程设计学报, 2013, 20(3): 260-264.