[1] |
刘占省, 刘诗楠, 赵玉红, 等. 智能建造技术发展现状与未来趋势[J]. 建筑技术, 2019, 50(7): 772-779. LIU Z S, LIU S N, ZHAO Y H, et al. Development status and future trends of intelligent construction technology[J]. Architecture Technology, 2019, 50(7): 772-779.
|
[2] |
CARNEAU P, MESNIL R, BAVEREL O, et al. Layer pressing in concrete extrusion-based 3D-printing: experiments and analysis[J]. Cement and Concrete Research, 2022, 155: 106741.
|
[3] |
MARCHON D, KAWASHIMA S, BESSAIES-BEY H, et al. Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry[J]. Cement and Concrete Research, 2018, 112: 96-110.
|
[4] |
YANG L M, SEPASGOZAR S M E, SHIROWZHAN S, et al. Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete[J]. Automation in Construction, 2023, 146: 104671.
|
[5] |
ZHANG N, SANJAYAN J. Extrusion nozzle design and print parameter selections for 3D concrete printing[J]. Cement and Concrete Composites, 2023, 137: 104939.
|
[6] |
LOWKE D, DINI E, PERROT A, et al. Particle-bed 3D printing in concrete construction: possibilities and challenges[J]. Cement and Concrete Research, 2018, 112: 50-65.
|
[7] |
ROUSSEL N. Rheological requirements for printable concretes[J]. Cement and Concrete Research, 2018, 112: 76-85.
|
[8] |
WOLFS R J M, BOS F P, SALET T A M. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing[J]. Cement and Concrete Research, 2018, 106: 103-116.
|
[9] |
SANJAYAN J G, NEMATOLLAHI B, XIA M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete[J]. Construction and Building Materials, 2018, 172: 468-475.
|
[10] |
HUANG X, YANG W H, SONG F N, et al. Study on the mechanical properties of 3D printing concrete layers and the mechanism of influence of printing parameters[J]. Construction and Building Materials, 2022, 335: 127496.
|
[11] |
ZHANG H H, TAN Y K, HAO L C, et al. Intelligent real-time quality control for 3D-printed concrete with near-nozzle secondary mixing[J]. Automation in Construction, 2024, 160: 105325.
|
[12] |
TAY Y W D, LI M Y, TAN M J. Effect of printing parameters in 3D concrete printing: printing region and support structures[J]. Journal of Materials Processing Technology, 2019, 271: 261-270.
|
[13] |
COMMINAL R, SILVA W R L DA, ANDERSEN T J, et al. Influence of processing parameters on the layer geometry in 3D concrete printing: experiments and modelling[C]//RILEM International Conference on Concrete and Digital Fabrication. Cham: Springer, 2020: 852-862.
|
[14] |
LIU Q F, IQBAL M F, YANG J, et al. Prediction of chloride diffusivity in concrete using artificial neural network: modelling and performance evaluation[J]. Construction and Building Materials, 2021, 268: 121082.
|
[15] |
KESHAVARZ Z, TORKIAN H. Application of ANN and ANFIS models in determining compressive strength of concrete[J]. Soft Computing in Civil Engineering, 2018, 2(1): 62-70.
|
[16] |
AHMAD A, CHAIYASARN K, FAROOQ F, et al. Compressive strength prediction via gene expression programming (GEP) and artificial neural network (ANN) for concrete containing RCA[J]. Buildings, 2021, 11(8): 324.
|
[17] |
NAZAR S, YANG J, AHMAD A, et al. Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete[J]. Materials Today Communications, 2022, 32: 103964.
|
[18] |
AZIM I, YANG J, IQBAL M F, et al. Semi-analytical model for compressive arch action capacity of RC frame structures[J]. Structures, 2020, 27: 1231-1245.
|
[19] |
ALYAMI M, KHAN M, FAWAD M, et al. Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms[J]. Case Studies in Construction Materials, 2024, 20: e02728.
|
[20] |
UDDIN M N, YE J H, DENG B Y, et al. Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC)[J]. Journal of Building Engineering, 2023, 72: 106648.
|
[21] |
BAYAR G, BILIR T. A novel study for the estimation of crack propagation in concrete using machine learning algorithms[J]. Construction and Building Materials, 2019, 215: 670-685.
|
[22] |
MÜTEVELLI ÖZKAN İ G, ALDEMIR A. Machine-learning networks to predict the ultimate axial load and displacement capacity of 3D printed concrete walls with different section geometries[J]. Structures, 2024, 66: 106879.
|
[23] |
CHANG Z, WAN Z, XU Y D, et al. Convolutional neural network for predicting crack pattern and stress-crack width curve of air-void structure in 3D printed concrete[J]. Engineering Fracture Mechanics, 2022, 271: 108624.
|
[24] |
彭云川, 杜彦斌, 毛恺奕, 等. 基于GS-SABO-BPNN和MOPSOCD的激光熔覆工艺参数优化方法[J/OL]. 计算机集成制造系统, 2024: 1-23(2024-09-26)[2024-12-28]. . PENG Y C, DU Y B, MAO K Y, et al. Optimization method of laser cladding process parameters based on GS-SABO-BPNN and MOPSOCD[J/OL]. Computer Integrated Manufacturing Systems, 2024: 1-23(2024-09-26) [2024-12-28]. .
|
[25] |
董海, 闫思语. 基于GEO-ANN的SLS成型件工艺参数优化与表面质量控制[J/OL]. 计算机集成制造系统, 2024: 1-18(2024-12-02) [2024-12-28]. . DONG H, YAN S Y. Optimization of process parameters and surface quality control of SLS molding parts based on GEO-ANN[J/OL]. Computer Integrated Manufacturing Systems, 2024: 1-18(2024-12-02) [2024-12-28]. .
|
[26] |
董文帅, 胡彬彬, 闫伸, 等. 箱式烘烤烟叶高温蒸汽回潮工艺参数优化[J]. 西南农业学报, 2025, 38(1): 200-208. DONG W S, HU B B, YAN S, et al. Optimization of high temperature steam moisture recovery process parameters for box curing tobacco leaves[J]. Southwest China Journal of Agricultural Sciences, 2025, 38(1): 200-208.
|
[27] |
JIANG J C, YU C L, XU X, et al. Achieving better connections between deposited lines in additive manufacturing via machine learning[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3382-3394.
|
[28] |
KHAN M S, SANCHEZ F, ZHOU H Y. 3-D printing of concrete: beyond horizons[J]. Cement and Concrete Research, 2020, 133: 106070.
|
[29] |
KHOSHNEVIS B. Automated construction by contour crafting: related robotics and information technologies[J]. Automation in Construction, 2004, 13(1): 5-19.
|
[30] |
LABONNOTE N, RØNNQUIST A, MANUM B, et al. Additive construction: state-of-the-art, challenges and opportunities[J]. Automation in Construction, 2016, 72: 347-366.
|
[31] |
CHUA C K, LEONG K F. 3D printing and additive manufacturing: principles and applications[M]. Hackensack, New Jersey: World Scientific, 2015.
|
[32] |
TAY Y W D, PANDA B, PAUL S C, et al. 3D printing trends in building and construction industry: a review[J]. Virtual and Physical Prototyping, 2017, 12(3): 261-276.
|
[33] |
BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49.
|
[34] |
CHANDRA M A, BEDI S S. Survey on SVM and their application in image classification[J]. International Journal of Information Technology, 2021, 13(5): 1-11.
|
[35] |
HAN B G, ZHANG L Q, OU J P. Smart and multifunctional concrete toward sustainable infrastructures[M]. Singapore: Springer, 2017.
|
[36] |
SALAZAR D A, VÉLEZ J I, SALAZAR J C. Comparison between SVM and logistic regression: which one is better to discriminate?[J]. Revista Colombiana de Estadística, 2012, 35(2): 223-237.
|
[37] |
HILL H, DIETRICH S, YEATER D, et al. Developing a catalog of socio-sexual behaviors of beluga whales (Delphinapterus leucas) in the care of humans[J]. Animal Behavior and Cognition, 2015, 2(2): 105-123.
|
[38] |
ZHONG C T, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
|
[39] |
CAO Y, MIAO Q G, LIU J C, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758.
|
[40] |
WANG X L, JIN Y C, SCHMITT S, et al. Recent advances in Bayesian optimization[J]. ACM Computing Surveys, 2023, 55(13s): 1-36.
|
[41] |
SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]//Neural Information Processing Systems. Lake Tahoe Nevada, Dec. 3-6, 2012.
|
[42] |
BERKENKAMP F, KRAUSE A, SCHOELLIG A P. Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics[J]. Machine Learning, 2023, 112(10): 3713-3747.
|