Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (3): 393-401    DOI: 10.3785/j.issn.1006-754X.2024.03.151
机械零部件与装备设计     
履带行驶结构的内置式无线应变采集卡设计研究
殷国珠1(),张宏1(),宋扬2,王景宇1,宋佳琪1
1.太原科技大学 机械工程学院,山西 太原 030024
2.中国煤炭科工集团 太原研究院有限公司,山西 太原 030006
Design and research of built-in wireless strain acquisition card for tracked traveling structure
Guozhu YIN1(),Hong ZHANG1(),Yang SONG2,Jingyu WANG1,Jiaqi SONG1
1.School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Taiyuan Research Institute Company Limited, China Coal Technology and Engineering Group, Taiyuan 030006, China
 全文: PDF(4163 KB)   HTML
摘要:

针对煤矿履带掘进机器人在行驶过程中难以获取履带载荷的问题,基于电阻应变片的应变效应和测量电路,设计了一套适用于采集履带行驶结构动态特性的四通道无线应变采集卡。首先,分析了应变采集卡的电路和工作原理。然后,将2对应变片对称布置在试样板中,以DH5902N坚固型数据采集分析系统所采集的应变数据作为标准,通过仿真与试验相结合的方法对应变采集卡4个通道的灵敏度分别进行了标定。最后,将应变采集卡集成封装后内置于履带行驶结构中,并探讨了应变采集卡在封装环境下连续工作时的温度变化规律。结果表明,所设计的应变采集卡可同时采集4个通道的应变信号,其最高采样频率为1 000 Hz,发射功率为4.5 dBm,应变采集误差不超过5×10-6。该应变采集卡在封装环境下连续工作34.7 h后的温度稳定在34.58 ℃左右,可实现履带行驶结构的多自由度应变信号检测。研究结果为履带行驶结构动态载荷的实时采集以及掘进机器人的可靠性分析和故障预测提供了技术支撑。

关键词: 履带行驶结构应变采集卡标定封装    
Abstract:

Aiming at the problem that it is difficult to obtain the track load of coal mine tracked tunneling robots during driving, a set of four-channel wireless strain acquisition card suitable for collecting dynamic characteristics of tracked traveling structure was designed based on the strain effect of resistive strain gauges and the measurement circuit. Firstly, the circuit and working principle of the strain acquisition card were analyzed. Then, two pairs of strain gauges were symmetrically arranged on the test template, and the strain data collected by DH5902N rugged data acquisition and analysis system was used as the standard to calibrate the sensitivity of four channels in the strain acquisition card through the combination of simulation and test. Finally, the strain acquisition card was integrated and packaged in the tracked traveling structure, and the temperature variation rule of the strain acquisition card under continuous operation in the package environment was discussed. The results showed that the designed strain acquisition card could collect the strain signal of four channels at the same time. Its maximum sampling frequency was 1 000 Hz, transmitting power was 4.5 dBm, and strain acquisition error was less than 5×10-6. The temperature of the strain acquisition card was stable at 34.58 ℃ after 34.7 h continuous operation in the package environment, which could realize the multi-degree-of-freedom strain signal detection for the tracked traveling structure. The research results provide technical support for real-time acquisition of the dynamic load of tracked traveling structures and the reliability analysis and fault prediction of tunneling robots.

Key words: tracked traveling structure    strain acquisition card    calibration    package
收稿日期: 2023-04-20 出版日期: 2024-06-27
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(52075355);中央引导地方科技发展资金项目(YDZJSX20231A050);山西省重点研发计划项目(202202100401012);山西省研究生教育创新项目(2022Y681)
通讯作者: 张宏     E-mail: 19581596040@163.com;hexie007@163.com
作者简介: 殷国珠(1992—),男,山西朔州人,硕士生,从事机械状态健康监测与智能维护研究,E-mail: 19581596040@163.com,https://orcid.org/0009-0007-4851-9636
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
殷国珠
张宏
宋扬
王景宇
宋佳琪

引用本文:

殷国珠,张宏,宋扬,王景宇,宋佳琪. 履带行驶结构的内置式无线应变采集卡设计研究[J]. 工程设计学报, 2024, 31(3): 393-401.

Guozhu YIN,Hong ZHANG,Yang SONG,Jingyu WANG,Jiaqi SONG. Design and research of built-in wireless strain acquisition card for tracked traveling structure[J]. Chinese Journal of Engineering Design, 2024, 31(3): 393-401.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.151        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I3/393

图1  直流电桥的基本结构
图2  应变采集卡工作原理
图3  应变采集卡电路图
图4  应变采集卡标定装置
图5  试样板上应变片的粘贴位置
应变片位置坐标/mm
XY
114729
1′14718
218729
2′18718
表1  应变片粘贴位置的坐标
图6  试样板的应变仿真结果(圆孔1处固定、施加41.16 N外力)

固定

位置

施加外力/N微应变
应变片1应变片1′应变片2应变片2′
圆孔141.16-16.67-16.67-25.30-25.27
80.90-19.27-19.30-49.77-49.70
圆孔341.16-14.24-14.24-25.52-25.54
80.90-27.76-27.76-49.54-49.59
圆孔441.16-14.56-14.56-22.78-22.76
80.90-27.95-27.96-44.00-44.03
圆孔541.16-12.52-12.52-16.83-16.85
80.90-23.46-23.46-32.21-32.25
表2  固定位置、施加外力不同时试样板的应变仿真结果
固定位置悬挂质量/kg微应变
应变采集卡的CH1DH5902N的CH1应变采集卡的CH2DH5902N的CH2
圆孔14.200/-13.02-6.79-28.13
8.255-5.20-25.88-14.10-56.74
圆孔34.200-3.47-16.50-6.39-27.44
8.255-8.30-32.39-13.89-54.72
圆孔44.200-3.83-17.09-6.85-26.12
8.255-7.26-32.56-12.67-50.36
圆孔54.200-3.10-15.36/-21.44
8.255/-26.04-9.51-37.40
表3  应变采集卡CH1和CH2通道的标定试验测量数据
固定位置悬挂质量/kg微应变
应变采集卡的CH3DH5902N的CH3应变采集卡的CH4DH5902N的CH4
圆孔14.200-3.77-13.71-6.51-28.10
8.255-6.46-26.30-13.47-54.76
圆孔34.200-4.80-18.48-7.31-27.28
8.255-8.05-35.32-13.51-53.84
圆孔44.200/-18.64/-25.77
8.255-8.06-34.68-12.18-50.15
圆孔54.200/-17.06-5.39-21.11
8.255-7.37-33.73-8.33-37.84
表4  应变采集卡CH3和CH4通道的标定试验测量数据
图7  DH5902N采集应变与仿真应变的对比
通道拟合函数决定系数R2
CH1y1=3.640?x1-4.3940.949
CH2y2=3.886?x2-1.1610.994
CH3y3=5.129?x3+5.8850.998
CH4y4=4.015?x4-0.7580.978
表5  应变采集卡与DH5902N采集数据的拟合函数
图8  应变采集卡与DH5902N采集数据的拟合结果
图9  标定后应变采集卡与DH5902N的采集数据对比
图10  应变采集卡封装结构1—尼龙外壳;2—尼龙夹板;3—履带板;4—螺母;5—硅胶垫;6—环氧树脂胶;7—应变采集卡封装部分;8—凹槽;9—电池;10—散热孔。
图11  应变采集卡在履带行驶结构中的封装位置
组件数量/个使用温度范围/℃功耗/W发热量/(W/m3)
LTC6652芯片1-40~1250.016 21.20×106
CC2530芯片1-40~850.097 22.70×106
电阻12-55~1550.021 91.92×107
等效电容4-55~1550.069 16.07×107
表6  应变采集卡各组件的功耗和发热量
图12  应变采集卡的温度变化规律
图13  t=34.7 h时应变采集卡的温度云图
1 GAGG C R, LEWIS P R. In-service fatigue failure of engineered products and structures: case study review[J]. Engineering Failure Analysis, 2009, 16(6): 1775-1793.
2 涂乃云.履带板断裂分析[J].科技创新导报,2013(21):225. doi:10.3969/j.issn.1674-098X.2013.21.160
TU N Y. Fracture analysis of track shoes[J]. Science and Technology Innovation Herald, 2013(21): 225.
doi: 10.3969/j.issn.1674-098X.2013.21.160
3 白茹,裴东兴,谢锐.嵌入式履带车辆主动轮应力测试系统的研究[J].电子器件,2016,39(3):746-749. doi:10.3969/j.issn.1005-9490.2016.03.048
BAI R, PEI D X, XIE R. Researching on the embedded stress test system of vehicle driving wheel[J]. Chinese Journal of Electron Devices, 2016, 39(3): 746-749.
doi: 10.3969/j.issn.1005-9490.2016.03.048
4 孙晓策,杨桂玲,王超,等.在爬越台阶工况下履带车辆车体的应力应变分析[J].车辆与动力技术,2016(3):33-36.
SUN X C, YANG G L, WANG C, et al. Stress and deformation analysis of tracked vehicle body under the working conditions of climbing step[J]. Vehicle & Power Technology, 2016(3): 33-36.
5 吴铁军.基于4G-DTU的多通道无线数据采集器设计[J].仪器仪表用户,2023,30(1):31-35. doi:10.3969/j.issn.1671-1041.2023.01.008
WU T J. Design of multi-channel wireless data collector based on 4G-DTU[J]. Instrumentation, 2023, 30(1): 31-35.
doi: 10.3969/j.issn.1671-1041.2023.01.008
6 郭宏,胡孔耀,闫献国,等.振动自感知刀具磨损无线监测[J].西安交通大学学报,2022,56(11):1-10. doi:10.7652/xjtuxb202211001
GUO H, HU K Y, YAN X G, et al. Wireless monitoring of wear of the vibration self-sensing tool[J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 1-10.
doi: 10.7652/xjtuxb202211001
7 HUANG Q, TANG B, DENG L. Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring[J]. Measurement, 2015, 66: 35-44.
8 ZHONG L, ZHANG S, ZHANG Y, et al. Joint acquisition time design and sensor association for wireless sensor networks in microgrids[J]. Energies, 2021, 14(22): 7756.
9 胡挺,王文瑞,尹曰雷,等.高温应变片参数标定系统的设计与实验研究[J].传感技术学报,2015,28(9):1341-1346. doi:10.3969/j.issn.1004-1699.2015.09.013
HU T, WANG W R, YIN Y L, et al. Design and experiment research of high temperature strain calibration system[J]. Chinese Journal of Sensors and Actuators, 2015, 28(9): 1341-1346.
doi: 10.3969/j.issn.1004-1699.2015.09.013
10 TAN R, CHEN C, ZHENG Y, et al. High-precision calibration method for fiber Bragg grating strain sensing based on an optical lever[J]. Optical Fiber Technology, 2021, 61: 102392.
11 THOMAS M, JONAS H, SENF B, et al. Calibration of piezoresistive shape-memory alloy strain sensors[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(11): 1465-1472.
12 吴忠锴,马铁华,梁志剑.基于LabVIEW的力学应变采集软件设计[J].电子测试,2012(12):56-60. doi:10.3969/j.issn.1000-8519.2012.12.013
WU Z K, MA T H, LIANG Z J. Software design of mechanical strain acquisition based on LabVIEW[J]. Electronic Test, 2012(12): 56-60.
doi: 10.3969/j.issn.1000-8519.2012.12.013
13 王世阳,毕祥军,王平.基于LabVIEW多通道应变采集系统设计[J].国外电子测量技术,2017,36(8):83-87. doi:10.3969/j.issn.1002-8978.2017.08.019
WANG S Y, BI X J, WANG P. Multi-channel strain acquisition system based on LabVIEW[J]. Foreign Electronic Measurement Technology, 2017, 36(8): 83-87.
doi: 10.3969/j.issn.1002-8978.2017.08.019
14 李巧真,李刚,韩钦泽.电阻应变片的实验与应用[J].实验室研究与探索,2011,30(4):134-137. doi:10.3969/j.issn.1006-7167.2011.04.040
LI Q Z, LI G, HAN Q Z. Experiment and application of resistance strain gauge[J]. Research and Exploration in Laboratory, 2011, 30(4): 134-137.
doi: 10.3969/j.issn.1006-7167.2011.04.040
15 胡向东,李锐,程安宁,等.传感器与检测技术[M].北京:机械工业出版社,2013:35-38. doi:10.59238/j.pt.2013.06.001
HU X D, LI R, CHENG A N, et al. Sensor and detecting technology[M]. Beijing: China Machine Press, 2013: 35-38.
doi: 10.59238/j.pt.2013.06.001
16 韩涛,聂小华,段世慧.结构强度试验应变测量误差来源分析[J].工程与试验,2020,60(1):33-34. doi:10.3969/j.issn.1674-3407.2020.01.013
HAN T, NIE X H, DUAN S H. Analysis on the error source of strain measurement in structural strength test[J]. Engineering & Testing, 2020, 60(1): 33-34.
doi: 10.3969/j.issn.1674-3407.2020.01.013
17 李会旗.复杂地质条件下煤矿巷道安全掘进技术[J].能源与节能,2022(11):119-121. doi:10.3969/j.issn.2095-0802.2022.11.033
LI H Q. Safety excavation technology of coal mine roadway under complex geological conditions[J]. Energy and Energy Conservation, 2022(11): 119-121.
doi: 10.3969/j.issn.2095-0802.2022.11.033
18 FRUEHAUF P, MUNDING A, PRESSEL K, et al. Chip-package-board reliability of system-in-package using laminate chip embedding technology based on Cu lead frame[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 10(1): 44-56.
19 杨帆.二代芯片散热模组热设计的研究[J].科学技术创新,2021(9):59-60. doi:10.3969/j.issn.1673-1328.2021.09.025
YANG F. Research on thermal design of second generation chip heat dissipation module[J]. Science and Technology Innovation, 2021(9): 59-60.
doi: 10.3969/j.issn.1673-1328.2021.09.025
20 SWAN I R, BRYANT A T, MAWBY P A. Fast 3D thermal simulation of power module packaging[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2012, 25(4): 378-399.
21 莫婷,陈建,郑延莉,等.电动微耕机锂电池组风冷散热仿真分析[J].农机化研究,2021,43(12):247-253. doi:10.3969/j.issn.1003-188X.2021.12.045
MO T, CHEN J, ZHENG Y L, et al. Simulation of air-cooled heat dissipation of lithium battery pack for electric micro-tiller[J]. Journal of Agricultural Mechaniza
doi: 10.3969/j.issn.1003-188X.2021.12.045
[1] 唐钰,陶亮,徐奕,王恒,陈彬,张小龙. 整车驱动轴扭矩测试系统的开发与测试[J]. 工程设计学报, 2023, 30(6): 789-796.
[2] 王志军,张小涛,李梦祥. 基于多项式拟合的六维力传感器解耦算法研究[J]. 工程设计学报, 2023, 30(5): 571-578.
[3] 王晨学, 平雪良, 徐超. 基于视觉辅助定位的机械臂运动学参数辨识研究[J]. 工程设计学报, 2018, 25(1): 27-34.
[4] 何剑海, 周明德, 包建荣. 矿井WiFi视频传输系统软硬件设计与实现[J]. 工程设计学报, 2016, 23(6): 626-632.
[5] 魏新明, 沈平, 单修洋, 李渭松. 基于数值仿真的气动喷射阀回流间隙的优化[J]. 工程设计学报, 2016, 23(3): 244-250.
[6] 余本国, 王建中. 静态光谱分析检测及其软件实现[J]. 工程设计学报, 2009, 16(6): 469-472.
[7] 邢志伟, 孙剑光, 王立文. 机场跑道摩擦系数测试车标定装置研究[J]. 工程设计学报, 2009, 16(3): 223-226.
[8] 丛大成, 于大泳, 韩俊伟. Stewart平台的运动学精度分析和误差补偿[J]. 工程设计学报, 2006, 13(3): 162-165.