Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (6): 766-775    DOI: 10.3785/j.issn.1006-754X.2022.00.082
建模、仿真、分析与决策     
川渝地区可控震源道路激振效果分析
李琴1(),蒲伟1,黄志强1,席御僖2,李刚1,王若豪1
1.西南石油大学 机电工程学院,四川 成都 610500
2.中国石油集团东方地球物理公司勘探有限责任公司 西南物探分公司,四川 成都 610213
Analysis of road excitation effect of vibroseis in Sichuan and Chongqing area
Qin LI1(),Wei PU1,Zhi-qiang HUANG1,Yu-xi XI2,Gang LI1,Ruo-hao WANG1
1.School of Mechatronics Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Southwest Geophysical Exploration Branch, Bureau of Geophysical Prospecting Inc. , China National Petroleum Corporation, Chengdu 610000, China
 全文: PDF(5106 KB)   HTML
摘要:

川渝地区地形地貌复杂,可控震源在其乡村道路激振时存在激发信号畸变较大及激发能量耗散较大等问题。为了解决该问题,建立了可控震源道路激振模型,构建了可控震源道路激振效果评价体系,开展了川渝地区可控震源乡村道路激振效果研究,分析了可控震源道路激振能量耗散。结果表明:构建的激振效果评价体系能够较为全面地对川渝地区可控震源道路激振效果进行评价;相比碎石土路,可控震源在无缺陷水泥道路激振时传地能量减弱48.31%,地表接触中心点振幅下降77.44%,互作用力振幅下降18.18%,信号畸变增大34.69%,激振效果较差;道路缺陷对激振效果具有明显的减弱影响,圆形孔洞道路缺陷对激振效果的影响尤为突出,其中传地能量减弱54.94%,地表接触中心点振幅下降5.57%,互作用力振幅下降21.16%,信号畸变增大36.17%;川渝地区可控震源道路激振时,平板的结构能量耗散较大,约占系统总耗散能量的90%。研究结果可以为川渝地区可控震源乡村道路激振效果的改善提供理论指导。

关键词: 可控震源道路激振道路缺陷振动平板能量耗散    
Abstract:

Due to the complex terrain and landform in Sichuan and Chongqing area, there are some problems such as larger distortion of excitation signal and larger dissipation of excitation energy when vibroseis vibrates on rural roads. In order to solve this problem, a road excitation model of vibroseis was established, an evaluation system of road excitation effect of vibroseis was established, a study on the road excitation effect of vibroseis in Sichuan and Chongqing area was carried out, and the energy dissipation of road excitation of vibroseis was analyzed. The results showed that the proposed evaluation system could comprehensively evaluate the road excitation effect of vibroseis in Sichuan and Chongqing area; compared with gravel soil road, the ground transmission energy was 48.31% lower, the amplitude of surface contact center point was 77.44% lower, the amplitude of interaction force was 77.44% lower, the signal distortion was 34.69% higher, when vibroseis vibrated on non-defective cement road and the excitation effect was poor; the road defects had obvious weakening effect on the excitation effect, especially the round hole road defects, in which the ground transmission energy decreased by 54.94%, the amplitude of the surface contact center point decreased by 5.57%, the amplitude of the interaction force decreased by 21.16%, and the signal distortion increased by 36.17%; when vibroseis vibrated on roads in Sichuan and Chongqing area, the structural energy dissipation of the flat plate was relatively large, accounting for about 90% of the total energy dissipation of the system. The research results can provide theoretical guidance for the improvement of rural road excitation effect of vibroseis in Sichuan and Chongqing area.

Key words: vibroseis    road excitation    road defect    vibrating plate    energy dissipation
收稿日期: 2022-03-07 出版日期: 2023-01-06
CLC:  TH 123  
基金资助: 国家自然科学基金资助项目(41902326);四川省科技计划项目(22GJHZ0284);南充市-西南石油大学市校科技战略合作专项(SXHZ048);西南石油大学校企横向合作项目(JSTKY-22-002)
作者简介: 李 琴(1970—),女,四川乐山人,副教授,硕士,从事石油装备自动化研究,E-mail: 905973416@qq.com,https://orcid.org/0000-0003-2894-9026
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李琴
蒲伟
黄志强
席御僖
李刚
王若豪

引用本文:

李琴,蒲伟,黄志强,席御僖,李刚,王若豪. 川渝地区可控震源道路激振效果分析[J]. 工程设计学报, 2022, 29(6): 766-775.

Qin LI,Wei PU,Zhi-qiang HUANG,Yu-xi XI,Gang LI,Ruo-hao WANG. Analysis of road excitation effect of vibroseis in Sichuan and Chongqing area[J]. Chinese Journal of Engineering Design, 2022, 29(6): 766-775.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.082        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I6/766

图1  BV500型可控震源水泥道路激振现场
图2  川渝地区可控震源道路激振效果评价体系
图3  脱耦量测点的设置
图4  可控震源道路激振有限元模型
图5  可控震源在不同道路激振的有限元模型
图6  可控震源缺陷水泥道路有限元模型
缺陷类型宽度高度
方形孔洞10050
圆形孔洞5050
轴向裂缝40020
铅垂裂缝20100
表1  水泥道路缺陷的尺寸设置 (mm)
部件材料

密度/

(kg/m3)

弹性模量/

Pa

泊松比
振动器45钢7 8502.12×10110.31
平板铝合金2 7707.10×10100.33
道路混凝土2 6003.00×10100.26
大地硬质土1 8002.00×1080.32
砂岩2 3701.93×10100.38
表2  可控震源道路激振模型的材料参数
图7  可控震源道路激振模型网格划分
图8  可控震源道路激振模型载荷加载位置与加载形式
图9  A5、A6点在铅垂方向的位移曲线
图10  不同大地弹性模量下纵波波速仿真值与计算值的对比
图11  可控震源道路激振时互作用力仿真值与实测值的对比
图12  可控震源在缺陷水泥道路激振时平板与道路的脱耦量
图13  可控震源在缺陷水泥道路激振时道路与大地的脱耦量
道路类型传地能量/J地表接触中心点振幅/mm互作用力振幅/105N
碎石土路3 604.9682.2302.31
沥青道路2 052.3520.9631.98
无缺陷水泥道路1 863.3330.5031.89
表3  可控震源在乡村道路激振时的激振强度
缺陷类型传地能量/J地表接触中心点振幅/mm

互作用力

振幅/105N

方形孔洞1 451.5960.4331.69
圆形孔洞839.5370.4751.49
轴向裂缝1 591.9960.4291.54
铅垂裂缝1 709.8970.4471.71
表4  可控震源在缺陷水泥道路激振时的激振强度
图14  可控震源在乡村道路激振时的互作用力失真度
图15  可控震源在缺陷水泥道路激振时的互作用力失真度
图16  可控震源道路激振能量耗散分类
图17  可控震源在无缺陷水泥道路和碎石土路激振时各接触面的互作用力-法向位移曲线
耗散位置道路类型
碎石土路无缺陷水泥道路
平板?无缺陷水泥道路192.423
无缺陷水泥道路?大地159.043
无缺陷水泥道路78.451
平板?碎石土路459.406
平板4 011.1594 011.159
表5  1个激振周期内不同耗散位置的耗散能量
图18  振动器平板下方固连10 mm厚的橡胶垫
平板类型传地能量/J地表接触中心点振幅/mm互作用力振幅/105N
未加橡胶垫1 863.3330.5031.89
施加橡胶垫1 832.6190.4971.80
表6  施加橡胶垫前后可控震源在无缺陷水泥道路激振时的激振强度
图19  施加橡胶垫前后可控震源在无缺陷水泥道路激振时的互作用力失真度
1 王彧嫣,樊大磊,李文博.2020年国内外天然气形势分析及展望[J].中国矿业,2021,30(1):18-23.
WANG Yu-yan, FAN Da-lei, LI Wen-bo. Analysis and outlook of domestic and international oil & gas resources situation in 2020 [J]. China Mining Magazine, 2021, 30(1): 18-23.
2 陆家亮,唐红君,孙玉平.抑制我国天然气对外依存度过快增长的对策与建议[J].天然气工业,2019,39(8):1-9. doi:10.3787/j.issn.1000-0976.2019.08.001
LU Jia-liang, TANG Hong-jun, SUN Yu-ping. Measures and suggestions on restraining China's excessive growth of natural gas external dependence[J]. Natural Gas Industry, 2019, 39(8): 1-9.
doi: 10.3787/j.issn.1000-0976.2019.08.001
3 BERESNEV I A. Ground-force- or plate-displacement-based vibrator control?[J]. Journal of Sound and Vibration, 2012, 331(8): 1715-1721.
4 陈玉达,林君,邢雪峰.可控震源技术发展与应用[J].石油物探,2020,59(5):666-682. doi:10.3969/j.issn.1000-1441.2020.05.001
CHEN Yu-da, LIN Jun, XING Xue-feng. Development and application of vibroseis technology[J]. Geophysical Prospecting for Petroleum, 2020, 59(5): 666-682.
doi: 10.3969/j.issn.1000-1441.2020.05.001
5 李剑,佘源琦,高阳,等.中国天然气产业发展形势与前景[J].天然气工业,2020,40(4):133-142. doi:10.3787/j.issn.1000-0976.2020.04.017
LI Jian, SHE Yuan-qi, GAO Yang, et al. Natural gas industry in China: Development situation and prospect[J]. Natural Gas Industry, 2020, 40(4): 133-142.
doi: 10.3787/j.issn.1000-0976.2020.04.017
6 邹才能,郭建林,贾爱林,等.中国大气田科学开发的内涵[J].天然气工业,2020, 40(3):1-12.
ZOU Cai-neng, GUO Jian-lin, JIA Ai-lin, et al. Connotation of scientific development for giant gas fields in China[J]. Natural Gas Industry, 2020, 40(3): 1-12.
7 邹才能,赵群,丛连铸,等.中国页岩气开发进展、潜力及前景[J].天然气工业,2021,41(1):1-14. doi:10.3787/j.issn.1000-0976.2021.01.001
ZOU Cai-neng, ZHAO Qun, CONG Lian-zhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
doi: 10.3787/j.issn.1000-0976.2021.01.001
8 陶知非.改善可控震源高频信号输出品质的探讨[J].物探装备,2008(2):71-77. doi:10.3969/j.issn.1671-0657.2008.02.001
TAO Zhi-fei. Study on improving quality of high-frequency output signal in vibroseis[J]. Equipment for Geological Prospecting, 2008(2): 71-77.
doi: 10.3969/j.issn.1671-0657.2008.02.001
9 WEI Z H, PHILLIPS T F, HALL M A. Fundamental discussions on vibroseiss[J]. Geophysics, 2010, 75(6): W13-W25.
10 庄娟,林君,吴东江,等.高频可控震源与大地振动耦合过程幅频特性分析[J].长春科技大学学报,1999,29(2):184-187. doi:10.3969/j.issn.1671-5888.1999.02.019
ZHUANG Juan, LIN Jun, WU Dong-jiang, et al. Analyzing coupling process of the earth-high frequency vibrator[J]. Journal of Changchun University of Science and Technology, 1999, 29(2): 184-187.
doi: 10.3969/j.issn.1671-5888.1999.02.019
11 丁雅萍.KZ-28型可控震源振动器平板结构优化设计与效果研究[D].成都:西南石油大学,2015:51-52.
DING Ya-ping. Study on structural optimization and performance of KZ-28 vibroseis plate[D]. Chengdu: Southwest Petroleum University, 2015: 51-52.
12 欧倩茹.横波可控震源振动器激发效果与平板齿结构设计[D].成都:西南石油大学,2019:39-41.
Qian-ru OU. Excitation effect and plate tooth structure design of shear wave vibroseis vibrator [D]. Chengdu: Southwest Petroleum University, 2019: 39-41.
13 郝磊.可控震源平板效果研究及改进[D].成都:西南石油大学,2014:31-35.
HAO Lei. Study and improvement on performance of vibroseis plate[D]. Chengdu: Southwest Petroleum University, 2014: 31-35.
14 黄志强,彭珣,李刚.可控震源振动器平板‒大地接触性质与能量传递研究[J].工程设计学报,2019,26(1):102-109. doi:10.3785/j.issn.1006-754X.2019.01.015
HUANG Zhi-qiang, PENG Xun, LI Gang. Study on contact property and energy transfer between vibrator baseplate and ground[J]. Chinese Journal of Engineering Design, 2019, 26(1): 102-109.
doi: 10.3785/j.issn.1006-754X.2019.01.015
15 李刚,徐光明,黄志强,等.扫描信号激振下振动器‒大地耦合动刚度和动阻尼研究[J].工程设计学报,2021,28(4):450-457. doi:10.3785/j.issn.1006-754X.2021.00.054
LI Gang, XU Guang-ming, HUANG Zhi-qiang, et al. Research on vibrator-ground coupling dynamic stiffness and dynamic damping under excitation of sweep signal[J]. Chinese Journal of Engineering Design, 2021, 28(4): 450-457.
doi: 10.3785/j.issn.1006-754X.2021.00.054
16 李刚.可控震源振动器‒大地耦合振动与频宽拓展研究[D].成都:西南石油大学,2018:75-101.
LI Gang. Study on vibrator-earth coupling vibration and bandwidth extension of vibroseis[D]. Chengdu: Southwest Petroleum University, 2018: 75-101.
17 WEI Z H, PHILLIPS T F. Characterizing the vibrator captured ground mass system using finite element analyses[C]//SEG Technical Program Expanded Abstracts 2013, Tulsa: SEG, 2013: 126-130.
18 喻畑,李小军.汶川地震余震震源参数及地震动衰减与场地影响参数反演分析[J].地震学报,2012,34(5):621-632. doi:10.3969/j.issn.0253-3782.2012.05.004
YU Tian, LI Xiao-jun. Inversion of strong motion data for source parameters of Wenchuan aftershocks, attenuation function and average site effect[J]. Acta Seismologica Sinica, 2012, 34(5): 621-632.
doi: 10.3969/j.issn.0253-3782.2012.05.004
19 徐爱军,康丽生.可控震源平板‒大地振动模型及参数研究[J].中国煤田地质,2001,13(3):62-64.
XU Ai-jun, KANG Li-sheng. Controllable seismic source plane-telluric vibration model and parameters[J]. Coal Geology of China, 2001, 13(3): 62-64.
20 朱敏,朱镜清,姚保华,等.不同阻尼体系地震能量输入及阻尼能量耗散计算分析[J].地震工程与工程振动,2004,24(4):50-55. doi:10.3969/j.issn.1000-1301.2004.04.010
ZHU Min, ZHU Jing-qing, YAO Bao-hua, et al. Calculating analysis of energy input and dissipation of systems with different damping characteristics[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(4): 50-55.
doi: 10.3969/j.issn.1000-1301.2004.04.010
21 王庆朋,张力,唐志刚,等.粗糙结合面法向接触的能量耗散与阻尼特性研究[J].振动与冲击,2017,36(2):129-133.
WANG Qing-peng, ZHANG Li, TANG Zhi-gang, et al. Energy dissipation and damping characteristics analysis on the normal contacts of rough joint surfaces[J]. Journal of Vibration and Shock, 2017, 36(2): 129-133.
[1] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[2] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[3] 李刚, 徐光明, 黄志强, 亓文, 郝磊. 扫描信号激振下振动器-大地耦合动刚度和动阻尼研究[J]. 工程设计学报, 2021, 28(4): 450-457.
[4] 黄志强, 彭珣, 李刚. 可控震源振动器平板-大地接触性质与能量传递研究[J]. 工程设计学报, 2019, 26(1): 102-109.
[5] 李琴, 张凯, 黄志强, 李刚, 郝磊. 精密可控震源隔振系统参数优化设计[J]. 工程设计学报, 2018, 25(2): 180-187.
[6] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[7] 黄志强, 曾洪阳, 李刚, 陶知非, 郝磊. 可控震源重锤活塞杆动态行为规律与扰动控制研究[J]. 工程设计学报, 2017, 24(4): 403-411.