Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (5): 595-606    DOI: 10.3785/j.issn.1006-754X.2022.00.071
建模、仿真、分析与决策     
MVR系统中离心式蒸汽压缩机与蒸发器的匹配特性研究
周东1,2(),文鑫1,3,王净2,3,熊涛1,孙冬婷1,但光局1,刘扬2
1.重庆江增船舶重工有限公司,重庆 402263
2.船舶与海洋工程特种装备和动力系统国家工程研究中心,上海 201108
3.船用涡轮增压器研发重庆市工业和信息化重点实验室,重庆 402263
Study on matching characteristics of centrifugal vapor compressor and evaporator in MVR system
Dong ZHOU1,2(),Xin WEN1,3,Jing WANG2,3,Tao XIONG1,Dong-ting SUN1,Guang-ju DAN1,Yang LIU2
1.Chongqing Jiangjin Shipbuilding Heavy Industry Co. , Ltd. , Chongqing 402263, China
2.National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, Shanghai 201108, China
3.Key Laboratory of Marine Turbocharger Research and Development, Chongqing Industry and Information Technology, Chongqing 402263, China
 全文: PDF(7561 KB)   HTML
摘要:

为了保证机械式蒸汽再压缩(mechanical vapor recompression, MVR)系统的运行经济性和稳定性,对MVR系统中离心式蒸汽压缩机与蒸发器的匹配特性进行研究。针对蒸发器换热系数在新投、工作和结垢工况下的变化,提出了蒸发器运行温阻特性线的概念,并将其与离心式蒸汽压缩机的温升特性线叠加,从而开展离心式蒸汽压缩机与蒸发器的匹配分析。通过分析发现,离心式蒸汽压缩机的设计流量偏大或蒸发器的换热面积过小会导致匹配不足,易发生喘振,从而影响MVR系统的运行稳定性。而离心式蒸汽压缩机的设计流量偏小或蒸发器的换热面积过大会导致匹配过度,致使MVR系统的运行经济性差,甚至可能造成MVR系统无法建立热力自循环。结果表明,离心式蒸汽压缩机在MVR系统启动过程中会出现不稳定的喘振现象,可以通过系统参数的临时调节或采取辅助措施来避开不稳定区。设计时应保证离心式蒸汽压缩机的喘振裕度大于20%,蒸发器换热面积的设计裕度为30%;MVR系统运行时实际蒸发温度与设计温度的偏差应控制在±5 ℃以内。研究结果可为MVR系统的设计和调试提供参考。

关键词: 机械式蒸汽再压缩离心式蒸汽压缩机蒸发器匹配喘振    
Abstract:

In order to ensure the operation economy and stability of mechanical vapor recompression (MVR) system, the matching characteristics of centrifugal vapor compressor and evaporator in the MVR system were studied. In view of the change of heat transfer coefficient of evaporator under new operation, operation and scaling conditions, the concept of temperature resistance characteristic curve of evaporator operation was put forward, and it was superposed with the temperature rise characteristic curve of centrifugal vapor compressor, so as to carry out matching analysis of centrifugal vapor compressor and evaporator. Through analysis, it was found that the design flow of centrifugal vapor compressor was too large or the heat transfer area of evaporator was too small, which would lead to insufficient matching and easy surge, thus affecting the operation stability of MVR system. However, the design flow of centrifugal vapor compressor was too small or the heat transfer area of evaporator was too large, which led to excessive matching, resulting in poor operating economy of the MVR system, and may even cause the MVR system to be unable to establish thermal self cycle. The results showed that the centrifugal vapor compressor had unstable surge during the startup of MVR system, and the unstable area could be avoided by temporary adjustment of system parameters or by taking auxiliary measures. The surge margin of centrifugal vapor compressor should be more than 20% and the design margin of heat transfer area of evaporator should be 30% during design; the deviation between actual evaporation temperature and design temperature during MVR system operation should be controlled within ±5 ℃. The research results can provide reference for the design and debugging of MVR system.

Key words: mechanical vapor recompression    centrifugal vapor compressor    evaporator    matching    surge
收稿日期: 2022-01-20 出版日期: 2022-11-02
CLC:  TH 452  
基金资助: 重庆市重点研发项目(cstc2018jszx-cyzd0151)
作者简介: 周 东(1982—),男,重庆人,研究员级高级工程师,硕士,从事叶轮机械透平装备及系统设计研究,E-mail:chowtung@126.comhttps://orcid.org/0000-0003-3606-1107
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周东
文鑫
王净
熊涛
孙冬婷
但光局
刘扬

引用本文:

周东,文鑫,王净,熊涛,孙冬婷,但光局,刘扬. MVR系统中离心式蒸汽压缩机与蒸发器的匹配特性研究[J]. 工程设计学报, 2022, 29(5): 595-606.

Dong ZHOU,Xin WEN,Jing WANG,Tao XIONG,Dong-ting SUN,Guang-ju DAN,Yang LIU. Study on matching characteristics of centrifugal vapor compressor and evaporator in MVR system[J]. Chinese Journal of Engineering Design, 2022, 29(5): 595-606.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.071        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I5/595

图1  MVR系统主要设备构成示意
图2  MVR系统热力过程示意
设计参数数值
原液质量流量/(kg/h)3 200
二次蒸汽质量流量/(kg/h)3 000
加热蒸汽消耗量/(kg/h)3 050
蒸发温度/oC80
蒸汽压缩机饱和温升/oC12
表1  某MVR系统的主要设计参数
设计参数数值
质量流量/(kg/h)3 000
饱和温升/°C12
转速/(r/min)17 107
叶轮直径/mm360
叶轮进口叶高/mm68.2
叶轮出口叶高/mm24.2
叶片数16
等熵效率/%84
气动功率/kW80
表2  离心式蒸汽压缩机的主要设计参数
图3  蒸发器的物料衡算和热量衡算示意
设计参数数值
热负荷/kW1 938
换热面积/m2177
传热温差/℃10.52
壳体内径/mm1 200
壳体外径/mm1 220
传热系数/(W/(m2·℃))1 626(新投),952(结垢)
壳程污垢系数/(m2·℃/W)0.000 11
管程污垢系数/(m2·℃/W)0.000 3
换热管材质304不锈钢
换热管长度/mm3 000
换热管外径/mm32
换热管壁厚/mm1.5
换热管数量610
换热管束布置形式等边三角形
换热管管距/mm40
表3  蒸发器的主要设计参数
图4  离心式蒸汽压缩机的温升特性线
图5  蒸发器的特性线
图6  转速为Nc2时离心式蒸汽压缩机与蒸发器的特性匹配
图7  某MVR系统离心式蒸汽压缩机与蒸发器特性匹配(Te=80 °C,S=177 m2)
图8  某MVR系统中离心式蒸汽压缩机的匹配工作范围(Te=80 °C,S=177 m2)
图9  某MVR系统中蒸发器的匹配工作范围(Te=80 °C,S=177 m2)
图10  某MVR系统运行现场
时间运行点频率/Hz

转速/

(r/min)

饱和温升ΔTc/°C等熵效率/%
新投入Acdc430.86Ne983
7年后Acdx440.88Ne9.583
设计点Acd480.96Ne1284
表4  额定蒸发量下离心式蒸汽压缩机的运行参数
图11  离心式蒸汽压缩机运行点变化情况(Te=80 °C,S=177 m2)
匹配状态蒸发器换热面积S/m2变化比例
匹配不足1200.68
正常匹配1771.00
过度匹配2351.33
2891.63
表5  不同匹配状态下蒸发器的换热面积
图12  换热面积为120 m2时离心式蒸汽压缩机与蒸发器的匹配情况(Te=80 °C)
图13  换热面积为289 m2时离心式蒸汽压缩机与蒸发器的匹配情况(Te=80 °C)
图14  换热面积为235 m2时离心式蒸汽压缩机与蒸发器的匹配情况(Te=80 °C)
图15  实际蒸发温度为90 °C时离心式蒸汽压缩机与蒸发器的匹配情况(S=177 m2)
图16  实际蒸发温度为70 °C时离心式蒸汽压缩机与蒸发器的匹配情况(S=177 m2)

换热面积

S/m2

蒸发器质量M/kg压缩机气动功率Pc/kWΔPcM
1363 63080
1774 873600.016
2356 333520.010
表6  不同换热面积下蒸发器质量与离心式蒸汽压缩机气动功率对比
图17  离心式蒸汽压缩机的温升—气动功率特性线
1 李伟,朱曼利,洪厚胜.机械蒸汽再压缩技术(MVR)研究现状[J].现代化工,2016,36(11):28-31.
LI Wei, ZHU Man-li, HONG Hou-sheng. Research status of mechanical vapor recompression technology (MVR)[J]. Modern Chemical Industry, 2016, 36(11): 28-31.
2 赵远扬,刘广彬,李连生,等.机械蒸汽再压缩系统的性能分析[J].流体机械,2017,45(6):16-20. doi:10.3969/j.issn.1005-0329.2017.06.004
ZHAO Yuan-yang, LIU Guang-bin, LI Lian-sheng, et al. Performance analysis on mechanical vapor recompression system[J]. Fluid Machinery, 2017, 45(6): 16-20.
doi: 10.3969/j.issn.1005-0329.2017.06.004
3 高丽丽,张琳,杜明照.MVR蒸发与多效蒸发技术的能效对比分析研究[J].现代化工,2012,32(10):84-86. doi:10.3969/j.issn.0253-4320.2012.10.022
GAO Li-li, ZHANG Lin, DU Ming-zhao. Energy efficiency comparative analysis on MVR and multi-effect evaporation technology[J]. Modern Chemical Industry, 2012, 32(10): 84-86.
doi: 10.3969/j.issn.0253-4320.2012.10.022
4 HU Bin, WU Di, WANG Ru-zhu. Water vapor compression and its various applications[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 92-107.
5 陆凯杰,张琳,黄军洪,等.MVR蒸汽离心风机的数值模拟与结构优化[J].化学工程,2014,42(10):69-73. doi:10.3969/j.issn.1005-9954.2014.10.015
LU Kai-jie, ZHANG Lin, HUANG Jun-hong, et al. Numerical simulation and structure optimization of MVR steam centrifugal fan[J]. Chemical Engineering(China), 2014, 42(10): 69-73.
doi: 10.3969/j.issn.1005-9954.2014.10.015
6 KANG S H, RYU C K, HAN S K. Analysis of performance for centrifugal steam compressor[J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5521-5527.
7 LAL P. Numerical investigation and performance analysis on centrifugal steam compressor for mechanical vapor recompression (MVR) applications[D]. Shanghai: Shanghai Jiaotong University, 2017: 77-120.
8 YIN Hao-yu, WU Hong, LI Yu-long, et al. Performance analysis of the water-injected centrifugal vapor compressor[J]. Energy, 2020, 200: 117538.
9 LABIB N M, KIM S S, CHOI D, et al. Numerical investigation of the effect of inlet skew angle on the performance of mechanical vapor compressor[J]. Desalination, 2012, 284: 66-76.
10 ALEXANDER K, DONOHUE B, FEESE T, et al. Failure analysis of an MVR (mechanical vapor recompressor) impeller[J]. Engineering Failure Analysis, 2010, 17(6): 1345-1358.
11 KIM T G, LEE H C. Failure analysis of MVR (machinery vapor recompressor) impeller blade[J]. Engineering Failure Analysis, 2003, 10(3): 307-315.
12 张建军,李帅旗,陈永珍,等.蒸汽再压缩技术研究现状与发展趋势[J].新能源进展,2020,8(3):207-215. doi:10.3969/j.issn.2095-560X.2020.03.007
ZHANG Jian-jun, LI Shuai-qi, CHEN Yong-zhen, et al. Overview and development tendency of steam recompression[J]. Advances in New and Renewable Energy, 2020, 8(3): 207-215.
doi: 10.3969/j.issn.2095-560X.2020.03.007
13 ZHOU Ya-su, SHI Cheng-jun, DONG Guo-qiang. Analysis of mechanical vapor recompression wastewater distillation system[J]. Desalination, 2014, 353: 91-97.
14 BATURIN O V, BIYUK V V, ZVYAGINTSEV V A, et al. Investigation of possibility to use industrial high pressure fan as steam compressor for distillation desalination plant[J]. Journal of Physics Conference Series, 2018, 1111(1): 012030.
15 JAPIKSE D, BAINES C N. Introductions to turbomachinery[M]. Norwich, Vermont: Concepts ETI, Inc., 1994: 1-3.
16 潘学行,薛叙明.传热、蒸发与冷冻操作实训[M].北京:化学工业出版社,2006:76-88.
PAN Xue-xing, XUE Xu-ming. Heat transfer, evaporation and refrigeration manipulation training[M]. Beijing: Chemical Industry Press, 2006: 76-88.
17 余建祖,谢永奇,高红霞. 换热器原理与设计[M].北京: 北京航空航天大学出版社,2019:9-10.
YU Jian-zu, XIE Yong-qi, GAO Hong-xia. Heat exchangers theory and design[M]. Beijing: Beihang University Press, 2019: 9-10.
18 孙兰义,刘立新,马占华,等.换热器工艺设计[M].北京:中国石化出版社,2020:173-174.
SUN Lan-yi, LIU Li-xin, MA Zhan-hua, et al. Thermal design of heat exchangers[M]. Beijing: China Petrochemical Press, 2020: 173-174.
19 Tubular Exchanger Manufacturers Association, INC. Standards of the tubular exchanger manufacturers association[M]. 10th ed. New York: Richard C Byrne, Secretary, 2019: 10-41.
20 祁大同.离心式压缩机原理[M].北京:机械工业出版社,2017:142-144.
QI Da-tong. Principle of centrifugal compressor[M]. Beijing: China Machine Press, 2017: 142-144.
21 陶文铨.传热学[M].北京:高等教育出版社,2019:303-305.
TAO Wen-quan. Heat transfer[M]. Beijing: Higher Education Press, 2019: 303-305.
22 BRENNEN C E. Hydrodynamics of pumps[M]. New York: Cambridge University Press, 2011: 3-5.
23 VUKOSAVIC S N. Electrical machines[M]. New York: Springer, 2013: 475-478.
24 熊涛.一种压缩机防喘阀的控制方法:CN201810233328.6[P].2018-09-07.
XIONG Tao. A control method of compressor anti-surge valve: CN201810233328.6[P]. 2018-09-07.
[1] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[2] 李梦,尹宗军. 一种零件综合质量评定方法研究[J]. 工程设计学报, 2022, 29(4): 410-418.
[3] 张世淼, 邵宏宇, 陈辰, 陈永亮. 云制造环境下板材余料资源的服务匹配方法[J]. 工程设计学报, 2021, 28(2): 121-131.
[4] 汪威, 张开颜, 刘亚川, 黄玉春. 三维点云的两步校准法及其应用研究[J]. 工程设计学报, 2020, 27(5): 560-567.
[5] 赵泽宇, 吕健, 潘伟杰, 侯宇康, 付倩文. 基于虚拟再现行为的VR空间认知研究[J]. 工程设计学报, 2020, 27(3): 340-348.
[6] 卢万杰, 付华, 赵洪瑞. 基于深度学习算法的矿用巡检机器人设备识别[J]. 工程设计学报, 2019, 26(5): 527-533.
[7] 何改云, 庞凯瑞, 桑一村, 刘晨辉, 王宏亮. 曲面匹配方法在刀具加工轨迹优化中的应用[J]. 工程设计学报, 2019, 26(2): 190-196.
[8] 李咏乐,南敬昌,游长江,杜学坤,蒋 迪. 基于改进型匹配网络的宽带高效率E类功放的设计[J]. 工程设计学报, 2015, 22(2): 178-184.
[9] 夏 磊,江浩斌. 基于刚度匹配的汽车保险杠防撞梁改进设计[J]. 工程设计学报, 2015, 22(1): 84-88.
[10] 朱爱斌, 王步康, 田超, 周尧, 陈渭. 履带行走机构功率损耗分析系统设计与实现[J]. 工程设计学报, 2011, 18(6): 444-448.
[11] 刘 勇, 许爱强, 孟 上. 阴性选择算法匹配规则的FPGA实现[J]. 工程设计学报, 2010, 17(6): 464-468.
[12] 魏丕勇, 闫清东, 马越. 无人地面武器机动平台驱动系统设计与仿真研究[J]. 工程设计学报, 2005, 12(3): 152-158.
[13] 邓寅虎, 胡于进, 杨颖超. 双横臂双扭杆悬架中上下扭杆的刚度匹配和等强度设计[J]. 工程设计学报, 2002, 9(1): 44-48.
[14] 杨将新. 尺寸公差与形位公差优化设计的模型研究[J]. 工程设计学报, 2000, 7(3): 35-37.