Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (1): 73-78    DOI: 10.3785/j.issn.1006-754X.2019.01.010
建模、仿真、分析与决策     
月壤钻进取心过程钻具热特性研究
刘晓庆1, 刘君巍2, 王露斯1, 赖小明1, 战庆欣2
1. 北京卫星制造厂有限公司, 北京 100190;
2. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
Study on thermal characteristics of drilling tools during lunar soil drilling coring process
LIU Xiao-qing1, LIU Jun-wei2, WANG Lu-si1, LAI Xiao-ming1, ZHAN Qing-xin2
1. Beijing Spacecrafts Co., Ltd., Beijing 100190, China;
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(1920 KB)   HTML
摘要:

我国探月三期工程采用回转冲击钻对月表月壤进行预计深度为2米的采样作业,采样过程中钻头由于钻削产生的切削热完全由钻具本身导热传递。由于月球的超高真空度以及苛刻的温度环境,导热效率相较于地面钻探低。同时,由于钻进工况的未知性,钻具可能会形成局部高温区域,这会使钻具的整体性能降低,尤其对钻具的取心性能影响最大。通过EDEM软件,建立不同形状及颗粒大小的月壤颗粒微元模型,组成月壤仿真模型,基于高温小颗粒群法,开展钻进过程月壤热特性仿真研究,研究温升颗粒的分布规律,并根据这一分布规律建立温升颗粒数量与温升之间的关系式。另外,在模拟月壤钻进实验中,在原有的取芯钻具上补充若干温度测量点,通过光纤光栅传感技术,开展钻具热特性实验研究,获得了钻头不同位置区域的温升规律,以及回转转速、进给速率对钻具温度的影响规律。温升颗粒数量模型以及常规热特性实验均能实现钻具温升情况的预测,为后续钻具在拟实月球环境及恶劣工况下的热安全性研究提供依据。

关键词: 月壤钻具钻进规程热特性高温小颗粒群法    
Abstract:

Aiming to penetrate approximately two meters below the lunar surface, a rotary-percussive sampling drill is used for the lunar exploration project in China. The cutting heat generated by drilling is completely conducted by the drilling tool during the drilling process. Due to the ultra-high vacuum and harsh temperature environment of the Moon, the efficiency of the conduction is much lower than that of regular drilling operation on the Earth. As the drilling condition is unknown, the high temperature area in certain part of the drilling tool may be formed, which will reduce the overall performance of the drilling tool, particularly the coring performance of the drilling tool. Through the EDEM software, the lunar soil particle microelement model with different shapes and sizes were established to form the lunar soil simulation model. The thermal characteristics of the lunar soil in the drilling process were simulated based on the high temperature small particle cluster method in order to reveal the distribution rule of different temperature rise particle. Based on the distribution rule, a mathematical expression between the temperature rise particle number and temperature rise was built. In addition, in the simulated lunar drilling experiment, several temperature measurement points were supplemented on the original drilling tool by the fiber grating sensor technology. The thermal characteristic experiments of drilling tool were completed to obtain the temperature rise rule in different locations of drill bit and the influence of rotary speed or penetrating velocity on the temperature of drilling tool. Both the temperature rise particle number model and the traditional thermal characteristic experiment can predict the temperature rise of the drilling tool, which provides a basis for the thermal safety on the lunar simulation environment or extreme drilling condition.

Key words: lunar soil    drilling tool    drilling procedure    thermal characteristics    high temperature small particle cluster method
收稿日期: 2018-05-18 出版日期: 2019-02-28
CLC:  V19  
基金资助:

国家自然科学基金资助项目(11502277)

作者简介: 刘晓庆(1984-),女,山西汾阳人,工程师,硕士,从事空间机构结构设计与试验研究,E-mail:geda172@163.com,https://orcid.org/0000-0003-0506-0881
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘晓庆
刘君巍
王露斯
赖小明
战庆欣

引用本文:

刘晓庆, 刘君巍, 王露斯, 赖小明, 战庆欣. 月壤钻进取心过程钻具热特性研究[J]. 工程设计学报, 2019, 26(1): 73-78.

LIU Xiao-qing, LIU Jun-wei, WANG Lu-si, LAI Xiao-ming, ZHAN Qing-xin. Study on thermal characteristics of drilling tools during lunar soil drilling coring process. Chinese Journal of Engineering Design, 2019, 26(1): 73-78.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.01.010        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I1/73

[1] 欧阳自远,张熇.从人造卫星到月球探测器[M].上海:上海科技教育出版社,2007:155-160. OUYANG Zi-yuan, ZHANG He. From satellites to lunar probes[M]. Shanghai:Shanghai Science and Technology Education Press, 2007:155-160.
[2] 侯佑松.月面钻取采样过程钻具热特性测试系统研制与试验研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2013:11-25. HOU You-song. Drill thermal characteristics test system development and experiment research of the lunar surface drilling sampling process[D]. Harbin:Harbin Institute of Technology, School of Mechanical and Electric Engineering, 2013:11-25.
[3] 王长江.深井钻具失效的理论研究[D].大庆:东北石油学院石油工程学院,2006:5-9. WANG Chang-jiang. Academic research of drillstem failure in deep well[D]. Northeast Petroleum University, School of Petroleum Engineering, 2006:5-9.
[4] HORAI K, SIMMONS G, KANAMORI H, et al. Thermal diffusivity, conductivity and thermal inertia of Apollo 11 lunar material[R]. Geochimica et Cosmochimica Acta Supplement, 1970, 1:2243.
[5] ALLTON J H. Catalog of Apollo lunar surface geological sampling tools and containers[R]. Washington:Johnson Space Center, NASA, 1989.
[6] 孙灵芝,凌宗成,刘建忠.美国阿波罗月球样品的处理与保存[J].地学前缘,2012,19(6):128-136. SUN Ling-zhi, LING Zong-cheng, LIU Jian-zhong. An introduction to the curation of Apollo lunar samples[J]. Earth Science Frontiers, 2012, 19(6):128-136.
[7] LANGSETH Jr M G, CLARK Jr S P, CHUTE Jr J L, et al. The Apollo 15 lunar heat-flow measurement[J]. The Moon, 1972, 4(3/4):390-410.
[8] 周强.基于离散元方法的颗粒材料热传导研究[D].大连:大连理工大学工程力学系,2011:44-65. ZHOU Qiang. A numerical study on thermal conduction within granular materials based on discrete element method[D]. Dalian:Dalian University of Technology, Department of Engineering Mechanics, 2011:44-65.
[9] 郑永春,欧阳自远,王世杰,等.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19. ZHENG Yong-chun, OUYANG Zi-yuan, WANG Shi-jie, et al. Physical and mechanical properties of lunar regolith[J]. Journal of Mineralogy & Petrology, 2004, 24(4):14-19.
[10] TIEN C L, NAYAK A L. Analytical models for lunar soil thermal conductivity[C]//AIAA 10th Thermophysics Conference, Denver, May 27-29, 1975.
[11] GREEN D H, RINGWOOD A E. Significance of a primitive lunar basaltic composition present in Apollo 15 soils and breccias[J]. Earth and Planetary Science Letters, 1973, 19(1):1-8.
[12] AFSHAR M N, WU C Y, SORLOAICA H N. Efficiency determination of an electrostatic lunar dust collector by discrete element method[J]. Journal of Applied Physics, 2012, 112(2):(023305-1)-(023305-9).
[13] 尹忠旺,丁希仑,郑岳山.基于ABAQUS的月壤有限元建模及仿真分析[J].军民两用技术与产品,2008(11):46-48. YIN Zhong-wang, DING Xi-lun, ZHENG Yue-shan. Finite element modeling and simulative analysis for lunar regolith based on ABAQUS[J]. Dual Use Technologies & Products, 2008(11):46-48.
[14] 朱立平,袁竹林,闫亚明,等.基于离散单元法的丝状颗粒传热数学模型[J].化工学报,2012,63(7):2051-2058. ZHU Li-ping,YUAN Zhu-lin, YAN Ya-ming, et al. Model of heat transfer in filamentous granular materials based on discrete element method[J]. CIESC Journal, 2012, 63(7):2051-2058.
[15] IORDANOFF I, ILIESCU D, CHARLES J L, et al. Discrete element method, a tool to investigate complex material behaviour in material forming[C]//NUMIFORM 2010:Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes Dedicated to Professor O. C. Zienkiewicz (1921-2009), Pohang, Jun. 13-17, 2010.
[16] AMINZADEH A, HOSSEININIA E S. A study on the effect of particle shape and fragmentation on the mechanical behavior of granular materials using discrete element method[C]//Powders and Grains 2013:Proceedings of the 7th International Conference on Micromechanics of Granular Media. American Institute of Physics, Sydney, Jul. 8-12, 2013.
[17] BURKHART G H, RICE R R. Determination of the thermal conductivity of barium sodium niobate[J]. Journal of Applied Physics, 2008, 48(11):4817-4818.
[18] ANDERSSON P, BÄCKSTRÖM G. Pressure dependence of the thermal conductivity of an epoxy resin[J]. Journal of Applied Physics, 2003, 44(2):705-707.
[19] BAHRAMI M, YOVANOVICH M M, CULHAM J R. A compact model for spherical rough contacts[J]. Journal of Tribology, 2005, 127(4):884-889.

[1] 马超群,张凯,柴麟,刘宝林,周琴. 机械式自动垂直钻具执行机构内部流场规律研究[J]. 工程设计学报, 2022, 29(3): 384-393.
[2] 李然然, 张凯, 柴麟, 张龙, 刘宝林, 李国民. 黏滑振动下机械式自动垂直钻具稳定平台的控制性能研究[J]. 工程设计学报, 2021, 28(6): 746-757.
[3] 张龙, 张凯, 柴麟, 李国民, 周琴, 刘宝林, 李然然. 机械式自动垂直钻具上盘阀开口角度的优化分析[J]. 工程设计学报, 2021, 28(1): 72-79.
[4] 谭慧, 宗宽, 熊长武, 翁夏, 杜平安. 叶脉型微通道热沉设计及散热特性分析[J]. 工程设计学报, 2019, 26(4): 477-483.
[5] 孙启臣, 季节, 秦俊杰, 赖小明. 月面采样钻具锁合随动式限幅机构研究[J]. 工程设计学报, 2018, 25(6): 735-740.
[6] 谢宇明, 卿启湘, 汤钦卿. 月壤的钻取采样离散元动态行为研究[J]. 工程设计学报, 2013, 20(6): 476-481.
[7] 刘 军, 赵 闯, 谢文磊, 臧志成, 胡剑文, 周欣平. 新型水暖式汽车暖风装置的开发与传热特性分析[J]. 工程设计学报, 2008, 15(1): 54-58.