同步磁阻电机非对称转子结构优化设计与分析
Optimal design and analysis of asymmetrical rotor structure for synchronous reluctance motor
通讯作者:
收稿日期: 2024-03-21
基金资助: |
|
Received: 2024-03-21
Fund supported: | 国家自然科学基金资助项目(U20A201284). |
作者简介 About authors
柴晓艺(1999—),女,硕士生,从事同步磁阻电机优化设计的研究.orcid.org/0009-0007-3945-7920.E-mail:
针对同步磁阻电机(SynRM)转矩脉动大和输出转矩低的问题,提出非对称贝塞尔(Bezier)形转子结构. 利用等价二次Bezier曲线确定磁障边界并建立初始模型,通过改变磁障偏移量进行转子非对称设计. 分析磁障厚度、磁障张角和磁障偏移量对转矩性能的灵敏度,筛选出显著参数. 以提高输出转矩和降低转矩脉动为优化目标,采用多目标蛇算法(MOSO)对显著参数进行优化,根据帕累托(Pareto)前沿解确定目标电机. 对比分析非对称Bezier形、圆弧形、双曲线形转子结构的SynRM转矩性能. 结果表明,在额定电流下,非对称Bezier形较圆弧形转子结构的SynRM转矩提升了2.7 N·m,转矩脉动降低了8.53%,较双曲线形转子结构的SynRM转矩脉动降低了15.49%. 样机实验与仿真结果的对比验证了优化设计方案的可行性.
关键词:
An asymmetric Bezier-shaped rotor structure was proposed aiming at the problems such as large torque ripple and low output torque of the synchronous reluctance motor (SynRM). The equivalent quadratic Bezier curve was utilized to determine the flux barrier boundary and establish the initial model. The asymmetric design of the rotor was implemented by changing the flux barrier offset. The sensitivity of thickness, endpoint angles, and offset of the flux barrier to the torque performance was analyzed to screen significant parameters. Then the values of the significant parameters were determined by using the multi-objective snake algorithm (MOSO) with the objectives of increasing the output torque and reducing the torque ripple. The target motor was determined based on the Pareto frontier solution. The torque performance of the SynRM with asymmetric Bezier-shaped, circular-shaped, and hyperbolic-shaped rotor structures was compared and analyzed. Results showed that the torque of the SynRM with asymmetric Bezier-shaped rotor structure was increased by 2.7 N·m and the torque ripple was reduced by 8.53% compared with circular-shaped rotor structure under the rated current. The torque ripple was reduced by 15.49% of the SynRM compared with hyperbolic-shaped rotor structure. The feasibility of the optimized design scheme was verified by the comparison between the prototype experiment and the simulation results.
Keywords:
本文引用格式
柴晓艺, 董砚, 刘荣哲.
CHAI Xiaoyi, DONG Yan, LIU Rongzhe.
SynRM转子结构的优化参数可以利用优化方法确定. Babetto等[10]采用差分算法对转子磁障径向肋宽进行优化,以提升SynRM转矩性能. Moghaddam等[11]采用响应面法与有限元相结合的方法,对SynRM的定转子进行优化设计,利用中心复合设计得到更精确的二次响应模型,以提升电机转矩、效率. Mirazimi等[12]通过保形映射计算转子磁障等效磁阻,采用等效磁路法建立磁路模型,以优化电机性能. 与有限元法相比,等效磁路法可以减少计算时间,但须利用有限元分析进行结果验证. 本文使用多目标蛇算法(multi-objective snake algorithm, MOSO)与有限元分析结合的方法,对SynRM转子结构进行优化设计,以提升电机转矩性能.
本文提出贝塞尔(Bezier)形转子结构,通过曲线拟合形成转子磁障形状. 为了降低转矩脉动,将非对称设计应用于SynRM转子结构设计中,引入磁障偏斜参数,使同一极下磁障关于
1. 非对称Bezier形转子结构
提出的Bezier形转子结构如图1所示. 利用经过磁障顶点和2个磁障末端点的等价二次Bezier曲线,确定磁障形状. 拟合点位置的改变影响转子磁障张角、磁障厚度与磁障偏移量,使磁障形状具有任意性.
图 1
图 1 Bezier形转子结构的几何形状和参数
Fig.1 Geometry and parameter of Bezier-shaped rotor structure
改变相关结构参数,Bezier形转子可以形成类圆弧形和类双曲线形转子结构. 以圆弧形、双曲线形转子结构作为对比对象,如图2所示,验证Bezier形转子结构的优越性.
图 2
图 2 圆弧形和双曲线形转子结构的几何形状
Fig.2 Geometry of circular-shaped and hyperbolic-shaped rotor structure
二次Bezier曲线利用起始点、终止点和控制点之间形成的两点线性插值,确定曲线形状. 该曲线经过起始点、终止点,通过调整控制点位置改变曲线形状. 二次Bezier曲线的形成原理如图3所示. 曲线
图 3
式中:
图 4
图 4 基于等价二次Bezier曲线的磁障边界形成原理
Fig.4 Formation principle of flux barrier boundary based on equivalent quadratic Bezier curve
定义
角平分线
式中:
以
联立式(6)、(7)可得
在推得角平分线
由此,形成等价二次Bezier曲线
表 1 电机的主要参数
Tab.1
参数 | 数值 |
定子外径 | 260 |
定子内径 | 170 |
定子槽数 | 36 |
转轴直径 | 60 |
气隙长度 | 0.5 |
铁心轴向长度 | 155 |
极对数 | 2 |
额定电流 | 12.7 |
图 5
图 5 不同磁障层数下Bezier形转子结构的电机转矩曲线
Fig.5 Motor torque curve of Bezier-shaped rotor structure with different number of flux barrier layer
2. 非对称Bezier形转子结构的优化
2.1. 非对称Bezier形转子结构的优化参数及优化流程
非对称Bezier形转子结构的优化参数如图6所示. 图中,
图 6
图 6 Bezier形转子结构的优化参数
Fig.6 Optimization parameter of Bezier-shaped rotor structure
图 7
图 7 Bezier形转子结构的优化流程图
Fig.7 Optimization flow chart of Bezier-shaped rotor structure
2.2. 非对称Bezier形转子结构的优化设计
使用改进拉丁超立方采样生成实验设计点,通过斯皮尔曼秩法分析优化参数与优化目标之间的相关性. 基于方差分析的斯皮尔曼秩法的灵敏度分析模型可以表示为
式中:
图8给出5层磁障的Bezier形转子结构优化参数的灵敏度
图 8
图 8 25个转子结构优化参数对转矩性能的灵敏度
Fig.8 Sensitivity of 25 optimization parameters of rotor structure to torque performance
蛇算法(snake optimizer, SO)是由Hashim等[20]提出的新颖的元启发式优化算法. 该算法模拟蛇因食物、温度变化产生的觅食、战斗、繁殖等行为进行数学建模,是简单、高效的优化算法. 使用结合精英选择和轮盘赌法多目标优化策略的MOSO算法,对非对称Bezier形转子结构进行优化设计,优化目标及约束如下所示.
式中:
精英选择策略与轮盘赌法的作用机理如图9所示. 其中,精英选择策略将第
图 9
图 9 精英选择和轮盘赌在迭代中排序与参数寻优的机理
Fig.9 Mechanism of elite selection and roulette strategy for sorting and parameter optimization in iteration
图 10
图 10 结合精英选择与轮盘赌的MOSO算法流程图
Fig.10 Flow chart of MOSO algorithm combining elite selection and roulette wheel selection method
图 11
图 11 MOSO与其他算法对转矩性能的Pareto前沿解
Fig.11 Pareto frontier solution of MOSO and other algorithm for torque performance
相对多目标粒子群算法(multi-objective particle swarm optimization, MOPSO)、非支配遗传算法(non-dominated sorting genetic algorithm, NSGA-II)的优化结果,MOSO算法具有更优的Pareto前沿. 综合考虑电机平均转矩与转矩脉动,选取Pareto前沿B拐角处点P电机为目标电机. 与初始电机转子结构相比,目标电机转子结构的磁障厚度变小,磁障张角变大,磁障顶点发生明显的偏移.
3. 非对称Bezier形转子结构的电机性能分析
在额定电流下,对优化后的非对称Bezier形转子结构与圆弧形、双曲线形转子结构的电机性能进行对比. 图12中,
图 12
图 12 额定电流下3种转子结构的电机转矩及谐波分析
Fig.12 Motor torque and harmonic analysis of three rotor structures under rated current
表2中,Ld、Lq分别为d、q轴电感,
表 2 额定电流下3种转子结构的电机转矩性能
Tab.2
转子结构 | ||||
圆弧形 | 70.56 | 13.59 | 162.80 | 9.52 |
双曲线形 | 73.54 | 20.55 | 169.20 | 9.75 |
Bezier形 | 73.26 | 5.06 | 168.90 | 8.55 |
如图13所示为不同电流下3种转子结构的电机电感及凸极比. 可知,非对称Bezier形转子结构的电机电感差在整体上优于圆弧形、双曲线形转子结构. 由于仅考虑电感差的提高,导致非对称Bezier形转子结构的电机凸极比上升较慢且整体降低.
图 13
图 13 不同电流下3种转子结构的电机电感及凸极比
Fig.13 Inductance and salient pole ratio of motor with three rotor structures under different current
如图14所示为不同电流下3种转子结构的电机转矩性能. 可知,不同电流下非对称Bezier形转子结构的电机转矩脉动小于10%,较圆弧形、双曲线形明显降低.
图 14
图 14 不同电流下3种转子结构的电机转矩性能
Fig.14 Torque performance of motor with three rotor structures under different current
如图15所示为不同电流下3种转子结构的电机功率因数
图 15
图 15 不同电流下3种转子结构的电机功率因数
Fig.15 Power factor of motor with three rotor structures under different current
如图16所示为不同电流角
图 16
图 16 不同电流角下3种转子结构的电机转矩性能
Fig.16 Torque performance of motor with three rotor structures at different current angle
综合电机输出转矩与转矩脉动性能考虑,非对称Bezier形转子较圆弧形、双曲线形转子结构有明显优势. 对于优化后的非对称Bezier形转子结构,须验证运行时的最大应力及机械强度是否符合要求.
图 17
图 17 稳态下圆弧形转子结构的应力及应变
Fig.17 Stress and strain of circular-shaped rotor structure under steady state
图 18
图 18 稳态下双曲线形转子结构的应力及应变
Fig.18 Stress and strain of hyperbolic-shaped rotor structure under steady state
图 19
图 19 稳态下Bezier形转子结构的应力及应变
Fig.19 Stress and strain of Bezier-shaped rotor structure under steady state
为了进一步验证Bezier形转子结构的SynRM转矩性能,制造样机并搭建实验平台进行测试,如图20所示. 实验平台主要由主电路和控制电路2部分组成.
图 20
图 20 基于DSP的Bezier形转子的SynRM实验平台
Fig.20 Experiment platform of SynRM with Bezier-shaped rotor structure based on DSP
图 21
图 21 不同电流下Bezier形转子的SynRM转矩实验曲线
Fig.21 Experimental torque curve of SynRM with Bezier-shaped rotor under different current
表 3 不同电流下Bezier形转子的SynRM仿真与实验转矩性能
Tab.3
仿真值 | 实验值 | 仿真值 | 实验值 | ||
2 | 2.47 | 2.49 | 10.09 | 10.26 | |
4 | 10.55 | 9.72 | 8.61 | 8.95 | |
6 | 23.36 | 22.64 | 8.86 | 9.25 | |
8 | 38.52 | 37.14 | 8.69 | 9.13 | |
10 | 53.77 | 52.45 | 6.72 | 7.20 | |
12 | 68.30 | 67.52 | 5.33 | 6.25 |
4. 结 论
(1)额定电流下,非对称Bezier形转子结构的电机高次转矩谐波含量低,较圆弧形、双曲线形转子结构的电机转矩脉动小. 在不同的电流及电流角下,综合考虑电机主要性能指标输出转矩和转矩脉动,非对称Bezier形转子结构较圆弧形、双曲线形转子结构有明显优势.
(2)非对称Bezier形转子结构的最大应力较圆弧形、双曲线形转子结构有所降低,且小于所用硅钢片材料的许用压力;最大应变与电机气隙长度相比可以忽略不计.
(3)通过样机实验,验证了非对称Bezier形转子结构优化设计方案的可行性,为SynRM及铁氧体辅助式SynRM的设计提供了新的选择,具有工程实用价值.
参考文献
Design and experimental performance assessment of an outer rotor PM-Assisted SynRM for the electric bike propulsion
[J].DOI:10.1109/TTE.2022.3202819 [本文引用: 1]
Battery supported solar water pumping system with adaptive feed-forward current estimation
[J].
Design optimization of a synchronous reluctance machine for high-performance applications
[J].DOI:10.1109/TIA.2021.3091416 [本文引用: 1]
Design optimization of synchronous reluctance motor for reducing iron loss and improving torque characteristics using topology optimization based on the level-set method
[J].
Design, optimisation and implementation of low-voltage synchronous reluctance motor for solar-powered systems
[J].DOI:10.1049/iet-pel.2018.5895 [本文引用: 1]
低转矩脉动同步磁阻电机磁障形状分析与优化设计
[J].
Flux barrier shape analysis and optimal design for low torque ripple synchronous reluctance machine
[J].
新型同步磁阻电机星形转子结构设计与分析
[J].
Astroid rotor structural design and analysis of a synchronous reluctance motor
[J].
A novel flux barrier parametrization for synchronous reluctance machines
[J].DOI:10.1109/TEC.2021.3099628 [本文引用: 1]
Synchronous reluctance machine optimization for high-speed applications
[J].DOI:10.1109/TEC.2018.2800536 [本文引用: 1]
Design optimization of transversely laminated synchronous reluctance machine for flywheel energy storage system using response surface methodology
[J].DOI:10.1109/TIE.2017.2716877 [本文引用: 1]
Magnetic field analysis of SynRel and PMASynRel machines with hyperbolic flux barriers using conformal mapping
[J].DOI:10.1109/TTE.2019.2959400 [本文引用: 1]
基于不对称转子结构与序贯田口稳健优化方法的同步磁阻电机设计
[J].
Synchronous reluctance machine based on asymmetrical rotor structure and sequential taguchi robust optimization method
[J].
Improvement of torque characteristics for a synchronous reluctance motor using MMA-based topology optimization method
[J].
FEAfix: FEA refinement of design equations for synchronous reluctance machines
[J].DOI:10.1109/TIA.2019.2954797 [本文引用: 1]
C- and circular-shaped barriers optimization in a synchronous reluctance rotor for torque ripples minimization
[J].
Application of epoxy resin in synchronous reluctance motors with fluid-shaped barriers for e-mobility
[J].DOI:10.1109/TIA.2021.3103826 [本文引用: 1]
Experimental verification of four-layer SynRM with asymmetric rotor structure in the stacking direction
[J].
Analytical method for optimal design of synchronous reluctance motor for electric scooter application
[J].
Snake optimizer: a novel meta-heuristic optimization algorithm
[J].DOI:10.1016/j.knosys.2022.108320 [本文引用: 1]
/
〈 |
|
〉 |
