浙江大学学报(工学版), 2022, 56(3): 607-612 doi: 10.3785/j.issn.1008-973X.2022.03.020

电气工程

用于SPMSM的自适应增量式无差拍预测电流控制算法

李博群,, 杨家强,

浙江大学 电气工程学院,浙江 杭州 310027

Adaptive incremental deadbeat predictive current control algorithm for surface-mounted permanent magnet synchronous motor

LI Bo-qun,, YANG Jia-qiang,

College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

通讯作者: 杨家强,男,教授,博士.orcid.org/0000-0002-3822-3301. E-mail: yjq1998@163.com

收稿日期: 2021-04-21  

基金资助: 国家自然科学基金资助项目(51777191);浙江省自然科学基金资助项目(LCZ19E070001)

Received: 2021-04-21  

Fund supported: 国家自然科学基金资助项目(51777191);浙江省自然科学基金资助项目(LCZ19E070001)

作者简介 About authors

李博群(1997—),男,硕士生,从事永磁同步电机控制研究.orcid.org/0000-0003-0386-3234.E-mail:2284088765@qq.com , E-mail:2284088765@qq.com

摘要

针对表贴式永磁同步电机(SPMSM)传统无差拍预测电流控制在参数失配时易扩大电流静差的问题,提出自适应增量式无差拍预测电流控制算法. 基于给定电压增量、给定电流增量以及实际电流增量建立增量式预测方程,结合定子电阻远小于定子电感与采样时间之比,消去定子电阻和永磁体磁链. 基于转子机械角速度误差对电流误差进行自适应加权组合,用该组合对增量式预测方程中的给定电压增量进行自适应补偿以减少预测误差. 实验结果表明,所提算法在设置的参数失配情况中,电流静差消除能力均高于传统算法;当转速变化时,在所提算法控制下电流内环的动态性能优于传统算法,转速外环的动态性能有效提高.

关键词: 表贴式永磁同步电机(SPMSM) ; 无差拍预测电流控制 ; 参数失配 ; 增量式预测方程 ; 自适应补偿

Abstract

An adaptive incremental deadbeat predictive current control algorithm was proposed to solve the problem of static current error caused by parameter mismatch in conventional deadbeat predictive current control of surface-mounted permanent magnet synchronous motor (SPMSM). The incremental prediction equation was established based on the reference voltage increment, the reference current increment and the actual current increment, and the relationship that the stator resistance is far less than the ratio of stator inductance to sampling time was also combined to eliminate stator resistance and permanent magnet flux. Then, the current errors were combined with adaptive weights based on the error of rotor mechanical angular speed, and the combination was taken to adaptively compensate the reference voltage increment in the incremental prediction equation, so as to reduce the prediction error. Experimental results show that the proposed algorithm has higher capacity of eliminating static current error than the conventional algorithm under the set conditions of parameter mismatch. When the speed changes, the dynamic performance of the current inner loop controlled by the proposed algorithm is better than that of the conventional algorithm, which effectively improves the dynamic performance of the speed outer loop.

Keywords: surface-mounted permanent magnet synchronous motor(SPMSM) ; deadbeat predictive current control ; parameter mismatch ; incremental predictive equation ; adaptive compensation

PDF (1786KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李博群, 杨家强. 用于SPMSM的自适应增量式无差拍预测电流控制算法. 浙江大学学报(工学版)[J], 2022, 56(3): 607-612 doi:10.3785/j.issn.1008-973X.2022.03.020

LI Bo-qun, YANG Jia-qiang. Adaptive incremental deadbeat predictive current control algorithm for surface-mounted permanent magnet synchronous motor. Journal of Zhejiang University(Engineering Science)[J], 2022, 56(3): 607-612 doi:10.3785/j.issn.1008-973X.2022.03.020

随着永磁材料的迅猛发展[1],表贴式永磁同步电机(surface-mounted permanent magnet synchronous motor, SPMSM)由于具有效率高、功率密度大、结构简单、动态响应性能良好等优点[2-3],在生活中的应用越来越广泛. 在SPMSM控制系统中,电流内环控制算法的优劣决定系统动态性能的好坏. 无差拍预测电流控制(deadbeat predictive current control, DPCC)具有结构简单、动态响应快的优点,在SPMSM伺服系统中逐渐占据重要地位[4];但是DPCC对电机的建模精度要求高,而SPMSM的定子电阻、定子电感、永磁体磁链这3个参数很容易在持久运行、高温的情况下发生变化,导致DPCC的参数失配从而扩大电流静差[5-6].

为了解决上述问题,学者们相继提出各种改进方案. Wang等[7]通过多个周期内的电流偏差,对d轴给定电压以及永磁体磁链参数进行补偿,虽然可以有效降低电流静差,但是需要使用多个周期内的稳态数据,可能会削弱系统的动态性能. Yao等[8]提出参数在线辨识方法,虽然该方法基于系统的重构特征向量,可以实时辨识定子电阻和定子电感;但是该方法不能辨识永磁体磁链,而且对辨识值是否能够收敛到真实值并没有理论保证. Zhang等[9-10]采用干扰观测器对扰动进行在线观测,对DPCC的输出量进行实时补偿,虽然可以有效减少电流静差,但是该方法涉及干扰观测器的设计问题,结构复杂且程序化难度较大.

本研究提出自适应增量式无差拍预测电流控制(adaptive incremental deadbeat predictive current control, AIDPCC),建立增量式预测方程消去定子电感和定子磁链,以提高算法的鲁棒性;对增量式预测方程中的给定电压增量进行自适应补偿,以减小预测误差. 设计实验以验证该算法的有效性.

1. 传统无差拍预测电流控制

SPMSM在同步旋转坐标系(dq坐标系)中的数学模型表示为

$ \left[ {\begin{array}{*{20}{c}} {\dfrac{{{\rm{d}}{i_d}}}{{{\rm{d}}t}}} \\ {\dfrac{{{\rm{d}}{i_q}}}{{{\rm{d}}t}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \dfrac{{{R_{\text{s}}}}}{{{L_{\text{s}}}}}}&{{\omega _{\text{e}}}} \\ { - {\omega _{\text{e}}}}&{ - \dfrac{{{R_{\text{s}}}}}{{{L_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_d}} \\ {{i_q}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{{{L_{\text{s}}}}}}&0 \\ 0&{\dfrac{1}{{{L_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{u_d}} \\ {{u_q}} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0 \\ {\dfrac{{{\omega _{\text{e}}}{\psi _{\text{f}}}}}{{{L_{\text{s}}}}}} \end{array}} \right]. $

式中: ${{i}}_{{d}}$${{i}}_{{q}}$分别为定子电流的dq轴分量; ${{u}}_{{d}}$${{u}}_{{q}}$分别为定子电压的dq轴分量;转子的电角速度 ${\omega }_{\text{e}}{=}{p}{ \omega }_{\text{m}}{=}{p}\text{2π}{n}\text{/}{60}$,其中p${ \omega }_{\text{m}}$n分别为电机的极对数、转子的机械角速度和转子的转速; ${{R}}_{\text{s}}$${{L}}_{\text{s}}$${\textit{ψ}}_{\text{f}}$分别为定子电阻、定子电感和永磁体磁链.

采用前向欧拉法对式(1)进行离散化,可以得到SPMSM的电流预测模型为

$ \begin{split} &\left[ {\begin{array}{*{20}{c}}{{i_d}\left( {k + 1} \right)} \\ {{i_q}\left( {k + 1} \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {1 - \dfrac{{{T_{\text{s}}}{R_{\text{s}}}}}{{{L_{\text{s}}}}}}&{{T_{\text{s}}}{\omega _{\text{e}}}\left( k \right)} \\ { - {T_{\text{s}}}{\omega _{\text{e}}}\left( k \right)}&{1 - \dfrac{{{T_{\text{s}}}{R_{\text{s}}}}}{{{L_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_d}\left( k \right)} \\ {{i_q}\left( k \right)} \end{array}} \right] + \\ &\qquad \qquad \qquad \left[ {\begin{array}{*{20}{c}} {\dfrac{{{T_{\text{s}}}}}{{{L_{\text{s}}}}}}&0 \\ 0&{\dfrac{{{T_{\text{s}}}}}{{{L_{\text{s}}}}}} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} {{u_d}\left( k \right)} \\ {{u_q}\left( k \right)} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0 \\ {\dfrac{{{T_{\text{s}}}{\omega _{\text{e}}}\left( k \right){\psi _{\text{f}}}}}{{{L_{\text{s}}}}}} \end{array}} \right]. \\[-25pt] \end{split}$

式中: $ {{T}}_{\text{s}} $为电流控制器的采样周期,k为采样序号.

传统无差拍预测电流控制的系统框图如图1所示. DPCC通过采集 ${\omega}_{\text{e}}$${{i}}_{{d}}$${{i}}_{{q}}$以及dq轴定子电流的给定值 ${{i}}_{{d}}^{{*}}$${{i}}_{{q}}^{{*}}$,计算dq轴定子电压的给定值 ${{u}}_{{d}}^{{*}}$${{u}}_{{q}}^{{*}}$,再经过坐标变换、脉宽调制操作实现对SPMSM的控制. 对于式(2),令 ${{i}}_{{d},\;{q}}^{{*}}({k})={{i}}_{{d},\;{q}}({k}+{1})$,可以得到DPCC在k时刻的预测方程为

图 1

图 1   传统无差拍预测电流控制系统框图

Fig.1   Block diagram of conventional deadbeat predictive current control system


$\begin{split} &\left[ {\begin{array}{*{20}{c}} {u_d^*\left( k \right)} \\ {u_q^*\left( k \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{R_0} - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&{ - {\omega _{\text{e}}}\left( k \right){L_0}} \\ {{\omega _{\text{e}}}\left( k \right){L_0}}&{{R_0} - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_d}\left( k \right)} \\ {{i_q}\left( k \right)} \end{array}} \right] +\\ & \qquad \qquad \quad \left[ {\begin{array}{*{20}{c}} {\dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&0 \\ 0&{\dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} {i_d^*\left( k \right)} \\ {i_q^*\left( k \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0 \\ {{\omega _{\text{e}}}\left( k \right){\psi _0}} \end{array}} \right].\\[-20pt] \end{split} $

式中: ${{R}}_{{0}}$${{L}}_{{0}}$${\textit{ψ}}_{{0}}$分别为电机实际参数 ${{R}}_{{{\rm{s}}}}$${{L}}_{{{\rm{s}}}}$${\textit{ψ}}_{{{\rm{f}}}}$的估计值,即在控制器中使用的参数.

2. 自适应增量式无差拍预测电流控制

由式(3)可以看出,当 ${{R}}_{{0}}$${{L}}_{{0}}$${\textit{ψ}}_{{0}}$与实际值存在偏差时,将导致计算出的 ${{u}}_{{d}}^{{*}}$${{u}}_{{q}}^{{*}}$失真,即产生预测误差. 为了克服这一缺陷,提出自适应增量式无差拍预测电流控制算法,包含如下改进.

2.1. 增量式预测方程

DPCC的预测精度取决于 ${{R}}_{{0}}$$ {{L}}_{{0}} $$ {\textit{ψ}}_{{0}} $这3个参数的精度,引入增量式预测方程,消去部分参数以减少参数失配的影响. SPMSM的机械时间常数远大于电气时间常数,因此在电流控制的暂态过程中,可以认为 ${ \omega }_{{{\rm{e}}}}({k})={\omega }_{{{\rm{e}}}}({k}-1)$[11],再根据式(3)可以得到DPCC在k−1时刻的预测方程为

$ \begin{split} &\left[ {\begin{array}{*{20}{c}} {u_d^*\left( {k - 1} \right)} \\ {u_q^*\left( {k - 1} \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{R_0} - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&{ - {\omega _{\text{e}}}\left( k \right){L_0}} \\ {{\omega _{\text{e}}}\left( k \right){L_0}}&{{R_0} - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{i_d}\left( {k - 1} \right)} \\ {{i_q}\left( {k - 1} \right)} \end{array}} \right] + \\ &\qquad\qquad\quad \;\; \left[ {\begin{array}{*{20}{c}} {\dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&0 \\ 0&{\dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {i_d^*\left( {k - 1} \right)} \\ {i_q^*\left( {k - 1} \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0 \\ {{\omega _{\text{e}}}\left( k \right){\psi _0}} \end{array}} \right]. \\[-20pt] \end{split} $

将式(3)与式(4)作差可以得到增量式预测方程为

$\begin{split} &\left[ {\begin{array}{*{20}{c}} {\Delta u_d^*\left( k \right)} \\ {\Delta u_q^*\left( k \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&0 \\ 0&{\dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\Delta i_d^*\left( k \right)} \\ {\Delta i_q^*\left( k \right)} \end{array}} \right] + \\ &\qquad \qquad \quad \;\;\left[ {\begin{array}{*{20}{c}} {{R_0} - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&{ - {\omega _{\text{e}}}\left( k \right){L_0}} \\ {{\omega _{\text{e}}}\left( k \right){L_0}}&{{R_0} - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\Delta {i_d}\left( k \right)} \\ {\Delta {i_q}\left( k \right)} \end{array}} \right].\\[-20pt] \end{split} $

式中:给定电压增量 $\Delta{{u}}_{{d},\;{q}}^{{*}}\left({k}\right)={{u}}_{{d},\;{q}}^{{*}}\left({k}\right)-{{u}}_{{d},\;{q}}^{{*}}\left({k}-1\right), {q}^{{*}}\left({k}\right)- $ $ {{u}}_{{d},\;{q}}^{{*}}({k}-{1})$,给定电流增量 $\Delta{{i}}_{{d},\;{q}}^{{*}}({k})={{i}}_{{d},\;{q}}^{{*}}({k}{)-}{{i}}_{{d},\;{q}}^{{*}}({k}{-}{1})$,实际电流增量 $\Delta{{i}}_{{d}{,}\;{q}}{(}{k}{)=}{{i}}_{{d}{,}\;{q}}{(}{k}{)-}{{i}}_{{d}{,}\;{q}}{(}{k}{-}{1}{)}$.

因为在电机本体中, ${{R}}_{\text{s}}\ll {{L}}_{\text{s}}/{{T}}_{\text{s}}$[12],所以可以将 $ {\text{R}}_{\text{0}} $忽略进而得到简化的增量式预测方程为

$\begin{split} &\left[ {\begin{array}{*{20}{c}} {\Delta u_d^*\left( k \right)} \\ {\Delta u_q^*\left( k \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&0 \\ 0&{\dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\Delta i_d^*\left( k \right)} \\ {\Delta i_q^*\left( k \right)} \end{array}} \right] + \\ &\qquad \qquad \quad \;\;\left[ {\begin{array}{*{20}{c}} { - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}}&{ - {\omega _{\text{e}}}\left( k \right){L_0}} \\ {{\omega _{\text{e}}}\left( k \right){L_0}}&{ - \dfrac{{{L_0}}}{{{T_{\text{s}}}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\Delta {i_d}\left( k \right)} \\ {\Delta {i_q}\left( k \right)} \end{array}} \right].\\[-20pt] \end{split} $

可以看出,此时算法的预测精度仅受参数 ${{L}}_{\text{0}}$影响,鲁棒性大大提高.

2.2. 自适应补偿

消去 ${{R}}_{{0}}$${\textit{ψ}}_{{0}}$后,算法还会受 ${{L}}_{{0}}$失配的影响而产生电流静差. 定义电流静差 ${{E}}_{{d}{,}{q}}^{\text{I}}$

$ E_{d,\;q}^{\text{I}} = \sqrt {\frac{1}{N}\sum\limits_{m = 1}^N {{{\left\{ {i_{d,\;q}^*\left[ m \right] - {i_{d,\;q}}\left[ m \right]} \right\}}^2}} } . $

式中:i*d,q[m]、id,q[m]分别为电流给定值和实际值的示波器第m次采样值,N为总采样点数.

为了减小预测误差,引入自适应补偿量将增量式预测方程中的给定电压增量补偿为

$ \left[ {\begin{array}{*{20}{c}} {{{\left. {\Delta u_d^*} \right|}_{{\text{com}}}}\left( k \right)} \\ {{{\left. {\Delta u_q^*} \right|}_{{\text{com}}}}\left( k \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\Delta u_d^*\left( k \right)} \\ {\Delta u_q^*\left( k \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{\varepsilon _d}\left( k \right)} \\ {{\varepsilon _q}\left( k \right)} \end{array}} \right]. $

式中:∆u*d,q|com(k)为补偿后的∆u*d,q(k), εd,q(k) 为自适应补偿量,其表达式定义为

$ \begin{split}& \left[ {\begin{array}{*{20}{c}} {{\varepsilon _d}\left( k \right)}\\ {{\varepsilon _q}\left( k \right)} \end{array}} \right] = {f_{\rm{A}}}\left( {\left. {\left| {{e^\Omega }\left( k \right)} \right|\;} \right|{E_ - },\;{E_ + },\;{J_ - },\;{J_ + }} \right) \times \\&\quad \qquad \qquad \left[ {\begin{array}{*{20}{c}} {{\alpha _{dd}}}&{{\alpha _{dq}}}\\ {{\alpha _{qd}}}&{{\alpha _{qq}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {e_d^{\rm{I}}\left( k \right)}\\ {e_q^{\rm{I}}\left( k \right)} \end{array}} \right]. \end{split} $

式中:电流误差 ${{e}}_{{d},\;{q}}^{\text{I}}{(}{k})={{i}}_{{d},\;{q}}^{{*}}({k}{)-}{{i}}_{{d},\;{q}}({k})$${{\alpha }}_{{dd}}、$ ${{\alpha }}_{{dq}}、$ ${{\alpha }}_{{qd}}、$ ${{\alpha }}_{{qq}}$分别为eId,q(k) 对自适应补偿值 ${ \varepsilon }_{{d,\;q}}({k})$的贡献权重;转子机械角速度误差 ${{e}}^{ \Omega }({k})={ \omega }_{\text{m}}^{{*}}({k})-{ \omega }_{\text{m}}({k})$;自适应调整函数 ${{f}}_{{A}}$的图像如图2所示,其表达式为

图 2

图 2   自适应调整函数 $ {{f}}_{\text{A}} $的图像

Fig.2   Graph of adaptive adjustment function $ {{f}}_{\text{A}} $


$ \begin{split} &{f_{\text{A}}}\left( {\left. {e\;} \right|{E_ - },\;{E_ + },\;{J_ - },\;{J_ + }} \right) = \\ & \qquad \;\; \left\{ \begin{array}{l} {J_ - },\\ {J_ - } + \dfrac{{{J_ + } - {J_ - }}}{{{E_ + } - {E_ - }}} \left( {e - {E_ - }} \right), \\ {J_ + }, \end{array} \begin{array}{c} e < {E_ - }; \\ {E_ - } \leqslant e \leqslant {E_ + }; \\ e > {E_ + }. \end{array}\right. \end{split} $

式中: ${{J}}_{{+}}$${{J}}_{{-}}$分别为函数 ${{f}}_{{{\rm{A}}}}$的上限与下限, ${{E}}_{{+}}$${{E}}_{{-}}$分别为上限与下限的启动阈值. 令自变量e= $\left|{{e}}^{\Omega }({k})\right|$,当 ${{E}}_-\leqslant{e}\leqslant{{E}}_{{+}}$时,设定 ${{f}}_{{{\rm{A}}}}$e的增加而增大,因为电机系统在受到加载等扰动的瞬间,e会突然增大,所以取较大的 ${{f}}_{{{\rm{A}}}}$用来增大补偿量以缩小电流环的调节时间;当电流环逐渐恢复到稳态时,逐渐减小 ${{f}}_{{{\rm{A}}}}$以减少补偿量,降低稳态时的电流脉动. 当 ${e}{ > }{{E}}_{+}$时,限定 ${{f}}_{{{\rm{A}}}}={{J}}_{{+}}$以防止过补偿引起电流环超调过大问题;当 ${e} < {{E}}_{{+}}$时,限定 ${{f}}_{{{\rm{A}}}}={{J}}_{-}$以防止欠补偿引起电流环稳态误差过大问题.

2.3. 方法总结

除了 ${{L}}_{{0}}$取决于电机本体的参数外,AIDPCC其他参数的取值范围: ${{E}}_{{-}}\in[0.000\;3{n}_{N},0.001\;0{{n}}_{{N}}],$ ${{E}}_{+} \in [0.007\;0{{n}}_{{N}},\;0.010\;5{{n}}_{{N}}], {{J}}_{{-}}\in{ [ 150,\;300]},\;{{J}}_{{+}}\in {[ 350,\;450 ]}$ , ${{\alpha }}_{{dd}}\in{[0.8,1.2]}, {{\alpha }}_{{dq}}\in{[0,0.6]},{{\alpha }}_{{qd}}\in[-{0.6,0]},{{\alpha }}_{{qq}}\in{[0.8,1.2]}$,其中 ${{n}}_{{N}}$为电机的额定转速.

最终,AIDPCC的预测方程为

$ \left[ {\begin{array}{*{20}{c}} {{{\left. {u_d^*} \right|}_{{\text{com}}}}\left( k \right)} \\ {{{\left. {u_q^*} \right|}_{{\text{com}}}}\left( k \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{{\left. {u_d^*} \right|}_{{\text{com}}}}\left( {k - 1} \right)} \\ {{{\left. {u_q^*} \right|}_{{\text{com}}}}\left( {k - 1} \right)} \end{array}}\right] + \left[ {\begin{array}{*{20}{c}} {{{\left. {\Delta u_d^*} \right|}_{{\text{com}}}}\left( k \right)} \\ {{{\left. {\Delta u_q^*} \right|}_{{\text{com}}}}\left( k \right)} \end{array}} \right]. $

式中: ${{u}}_{{d},\;{q}}^{{*}}{|}_{{{\rm{com}}}}({k})$为补偿后的 ${{u}}_{{d},\;{q}}^{{*}}({k})$,作为AIDPCC的输出量对电机进行控制.

3. 实验结果与分析

为了验证AIDPCC算法的可靠性,搭建SPMSM实验平台如图3所示. 被测电机参数如表1所示,其控制板的主控芯片采用意法半导体(ST)集团研制的STM32F405RGT6,电流采样频率与PWM频率均设为16 kHz. AIDPCC控制器的参数设置:E_=2,E+=26,J_=200,J+=400,αdd=1,αdq=0.5,αqd =−0.5,αqq=1.

图 3

图 3   表贴式永磁同步电机实验平台

Fig.3   Experimental bench of surface-mounted permanent magnet synchronous motor


表 1   表贴式永磁同步电机参数

Tab.1  Parameters of surface-mounted  permanent  magnetsynchronous motor

参数 数值 参数 数值
额定电压/V 36 转动惯量/(kg· $ {\text{m}}^{\text{2}} $) 5.88×10−6
额定电流/A 4.6 定子电阻/Ω 0.375
额定功率/W 100 定子电感/H 0.001
额定转速/(r·min−1) 3000 永磁体磁链/Wb 0.010 4
额定转矩/(N·m) 0.318 极对数 4

新窗口打开| 下载CSV


在每次测试中,电机以1 200 r/min的转速空载运行,并在2 s时突加0.16 N·m的负载. 给出算法DPCC、AIDPCC在参数失配情况下电机的q轴电流波形分别如图45所示. 由式(7)计算得到2种算法在参数失配时的 ${{E}}_{{q}}^{\text{I}}$表2所示.

图 4

图 4   无差拍预测电流控制在参数失配时电机q轴电流波形

Fig.4   Waveform of q axis current of motor with deadbeat predictive current control parameter mismatch


图 5

图 5   自适应增量式无差拍预测电流控制在参数失配时电机q轴电流波形

Fig.5   Waveform of q axis current of motor with adaptive incremental deadbeat predictive current control parameter mismatch


表 2   2种算法在参数失配时的q轴电流静差对比

Tab.2  Comparison of q axis static current error with parameter mismatch of two algorithms

参数失配情况 $E_q^{\rm{I}}/A$
DPCC AIDPCC
${{R} }_{{0} }{=}{5}{{R} }_{\text{s} }$ 0.254 8 0.019 9
${{R} }_{{0} }{=}{0.2}{{R} }_{\text{s} }$ 0.053 0 0.019 9
${{R} }_{{0} }{=}{5}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{5}{\textit{ψ} }_{\text{f} }$ 1.438 1 0.019 9
${{R} }_{{0} }{=}{0.2}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{0.2}{\textit{ψ} }_{\text{f} }$ 0.314 8 0.019 9
${{R} }_{{0} }{=}{5}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{5}{\textit{ψ} }_{\text{f} }$${{L} }_{{0} }{=}{5}{{L} }_{\text{s} }$ 0.150 0 0.102 3
${{R} }_{{0} }{=}{0.2}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{0.2}{\textit{ψ} }_{\text{f} }$${{L} }_{{0} }{=}{0.2}{{L} }_{\text{s} }$ 1.318 0 0.032 6

新窗口打开| 下载CSV


图4 (a)中,DPCC在 ${{R}}_{{0}}={5}{{R}}_{\text{s}}$时,q轴电流静差明显,为0.2548 A;图4 (b)中,DPCC在 ${{R}}_{{0}}{=}{0.2}{{R}}_{\text{s}}$时,q轴电流静差缩小至0.0530 A. 在图4 (c)中,DPCC在 ${{R}}_{{0}}{=}{5}{{R}}_{\text{s}}$${\textit{ψ}}_{{0}}{=}{5}{\textit{ψ}}_{\text{f}}$时,q轴电流静差高达1.4381 A;图4 (d)中,DPCC在 ${{R}}_{{0}}{=}{0.2}{{R}}_{\text{s}}$${\textit{ψ}}_{{0}}{=}{0.2}{\textit{ψ}}_{\text{f}}$时,q轴电流静差降低为0.3148 A. 由于消去 $ {{R}}_{{0}} $${\textit{ψ}}_{{0}}$,上述4种情况对应为图5(a)中AIDPCC在 ${{L}}_{{0}}{=} {{L}}_{\text{s}}$时的情况,此时q轴电流静差明显减小,为0.019 9 A,分别降低至上述4种情况的7.81%、37.55%、1.38%和6.32%. 图4 (e)中,DPCC在 ${{R}}_{{0}}{=}{5}{{R}}_{\text{s}}$${\textit{ψ}}_{{0}}{=} {5}{\textit{ψ}}_{\text{f}}$${{L}}_{{0}}{=}{5}{{L}}_{\text{s}}$时,q轴电流脉动较大且存在0.1500 A的静差;相对应的,图5 (b)中AIDPCC在 ${{L}}_{{0}}{=}{5}{{L}}_{\text{s}}$时,q轴电流给定值与实际值的重合度明显提高,静差为0.102 3 A,降至DPCC在相同失配情况下的68.20%. 图4 (f)中,DPCC在 ${{R}}_{{0}}{=}{0.2}{{R}}_{\text{s}}$${\textit{ψ}}_{{0}}{=}{0.2}{\textit{ψ}}_{\text{f}}$${{L}}_{{0}}{=}{0.2}{{L}}_{\text{s}}$时,q轴电流有小幅脉动,存在1.3180 A的静差;相对应的,图5(c)中AIDPCC在 ${{L}}_{{0}}{=}{0.2}{{L}}_{\text{s}}$时,q轴电流给定值与实际值的重合度同样明显提高,静差为0.0326 A,降至DPCC在相同失配情况下的2.47%. AIDPCC在所设各种参数失配情况下,电流内环的稳态性能均得到提高.

表2可知,当 ${{R}}_{{0}}{=}{5}{{R}}_{{{\rm{s}}}}$${\textit{ψ}}_{{0}}=5{\textit{ψ}}_{\text{f}}$时,DPCC控制下电机的q轴电流静差最大. 为了研究该情况对转速外环的影响,给出2种算法控制下电机带0.16 N·m负载加减速时的状态变量波形如图6所示. 图6 (a)中,无论在加速还是减速时,AIDPCC控制下q轴电流波形的超调和调节时间均明显小于DPCC;图6 (b)中,由于AIDPCC控制下的q轴电流较DPCC具有更好的动态性能,使得其控制下的转速相对于DPCC能更快达到稳定,转速外环的动态性能有明显的提升.

图 6

图 6   电机带载加减速时的状态变量波形

Fig.6   Waveform of state variable of motor with load during acceleration and deceleration


4. 结 论

(1)AIDPCC不受定子电阻和永磁体磁链这2个参数的影响,仅受定子电感的影响,具有很好的鲁棒性,且稳态时电流静差较传统算法更小.

(2)在转速控制时,AIDPCC的转速动态性能明显优于传统算法的,AIDPCC能够使转速快速稳定.

(3)AIDPCC无法有效抑制定子电感失配时带来的q轴电流脉动,后续研究将以此展开.

参考文献

陈同有, 杨家强, 郑仕达, 等

基于余弦函数的无传感器永磁风机IF起动平滑切换方法

[J]. 浙江大学学报:工学版, 2020, 54 (8): 1572- 1577

[本文引用: 1]

CHEN Tong-you, YANG Jia-qiang, ZHENG Shi-da, et al

IF starting smooth switching method of sensorless permanent magnet fan based on cosine function

[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1572- 1577

[本文引用: 1]

LIU B, ZHOU B, NI T

Principle and stability analysis of an improved self-sensing control strategy for surface-mounted PMSM drives using second-order generalized integrators

[J]. IEEE Transactions on Energy Conversion, 2018, 33 (1): 126- 136

DOI:10.1109/TEC.2017.2738025      [本文引用: 1]

ORTEGA A J P, XU L

Analytical prediction of torque ripple in surface-mounted permanent magnet motors due to manufacturing variations

[J]. IEEE Transactions on Energy Conversion, 2016, 31 (4): 1634- 1644

DOI:10.1109/TEC.2016.2598649      [本文引用: 1]

PEI G, LIU J, GAO X, et al

Deadbeat predictive current control for SPMSM at low switching frequency with moving horizon estimator

[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (1): 345- 353

DOI:10.1109/JESTPE.2019.2960579      [本文引用: 1]

YUAN X, ZHANG S, ZHANG C

Improved model predictive current control for SPMSM drives with parameter mismatch

[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (2): 852- 862

DOI:10.1109/TIE.2019.2901648      [本文引用: 1]

YUAN X, ZHANG S, ZHANG C, et al

Improved model predictive current control for SPMSM drives using current update mechanism

[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (3): 1938- 1948

DOI:10.1109/TIE.2020.2973880      [本文引用: 1]

WANG G, YANG M, NIU L, et al. Static error elimination algorithm for PMSM predictive current control [C]// Proceedings of the 33rd Chinese Control Conference. Nanjing: IEEE, 2014: 7691-7696.

[本文引用: 1]

YAO Y, HUANG Y, PENG F, et al

An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs

[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (12): 10145- 10155

DOI:10.1109/TIE.2019.2960755      [本文引用: 1]

ZHANG X, HOU B, MEI Y

Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer

[J]. IEEE Transactions on Power Electronics, 2017, 32 (5): 3818- 3834

DOI:10.1109/TPEL.2016.2592534      [本文引用: 1]

JIANG Y, XU W, MU C, et al

Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system

[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 251- 263

DOI:10.1109/TVT.2017.2752778      [本文引用: 1]

ZHANG Y, XU D, LIU J, et al

Performance improvement of model-predictive current control of permanent magnet synchronous motor drives

[J]. IEEE Transactions on Industry Applications, 2017, 53 (4): 3683- 3695

DOI:10.1109/TIA.2017.2690998      [本文引用: 1]

王伟华, 肖曦, 丁有爽

永磁同步电机改进电流预测控制

[J]. 电工技术学报, 2013, 28 (3): 50- 55

DOI:10.3969/j.issn.1000-6753.2013.03.007      [本文引用: 1]

WANG Wei-hua, XIAO Xi, DING You-shuang

An improved predictive current control method for permanent magnet synchronous motors

[J]. Transactions of China Electrotechnical Society, 2013, 28 (3): 50- 55

DOI:10.3969/j.issn.1000-6753.2013.03.007      [本文引用: 1]

/