用于SPMSM的自适应增量式无差拍预测电流控制算法
Adaptive incremental deadbeat predictive current control algorithm for surface-mounted permanent magnet synchronous motor
通讯作者:
收稿日期: 2021-04-21
基金资助: |
|
Received: 2021-04-21
Fund supported: | 国家自然科学基金资助项目(51777191);浙江省自然科学基金资助项目(LCZ19E070001) |
作者简介 About authors
李博群(1997—),男,硕士生,从事永磁同步电机控制研究.orcid.org/0000-0003-0386-3234.E-mail:
针对表贴式永磁同步电机(SPMSM)传统无差拍预测电流控制在参数失配时易扩大电流静差的问题,提出自适应增量式无差拍预测电流控制算法. 基于给定电压增量、给定电流增量以及实际电流增量建立增量式预测方程,结合定子电阻远小于定子电感与采样时间之比,消去定子电阻和永磁体磁链. 基于转子机械角速度误差对电流误差进行自适应加权组合,用该组合对增量式预测方程中的给定电压增量进行自适应补偿以减少预测误差. 实验结果表明,所提算法在设置的参数失配情况中,电流静差消除能力均高于传统算法;当转速变化时,在所提算法控制下电流内环的动态性能优于传统算法,转速外环的动态性能有效提高.
关键词:
An adaptive incremental deadbeat predictive current control algorithm was proposed to solve the problem of static current error caused by parameter mismatch in conventional deadbeat predictive current control of surface-mounted permanent magnet synchronous motor (SPMSM). The incremental prediction equation was established based on the reference voltage increment, the reference current increment and the actual current increment, and the relationship that the stator resistance is far less than the ratio of stator inductance to sampling time was also combined to eliminate stator resistance and permanent magnet flux. Then, the current errors were combined with adaptive weights based on the error of rotor mechanical angular speed, and the combination was taken to adaptively compensate the reference voltage increment in the incremental prediction equation, so as to reduce the prediction error. Experimental results show that the proposed algorithm has higher capacity of eliminating static current error than the conventional algorithm under the set conditions of parameter mismatch. When the speed changes, the dynamic performance of the current inner loop controlled by the proposed algorithm is better than that of the conventional algorithm, which effectively improves the dynamic performance of the speed outer loop.
Keywords:
本文引用格式
李博群, 杨家强.
LI Bo-qun, YANG Jia-qiang.
随着永磁材料的迅猛发展[1],表贴式永磁同步电机(surface-mounted permanent magnet synchronous motor, SPMSM)由于具有效率高、功率密度大、结构简单、动态响应性能良好等优点[2-3],在生活中的应用越来越广泛. 在SPMSM控制系统中,电流内环控制算法的优劣决定系统动态性能的好坏. 无差拍预测电流控制(deadbeat predictive current control, DPCC)具有结构简单、动态响应快的优点,在SPMSM伺服系统中逐渐占据重要地位[4];但是DPCC对电机的建模精度要求高,而SPMSM的定子电阻、定子电感、永磁体磁链这3个参数很容易在持久运行、高温的情况下发生变化,导致DPCC的参数失配从而扩大电流静差[5-6].
本研究提出自适应增量式无差拍预测电流控制(adaptive incremental deadbeat predictive current control, AIDPCC),建立增量式预测方程消去定子电感和定子磁链,以提高算法的鲁棒性;对增量式预测方程中的给定电压增量进行自适应补偿,以减小预测误差. 设计实验以验证该算法的有效性.
1. 传统无差拍预测电流控制
SPMSM在同步旋转坐标系(dq坐标系)中的数学模型表示为
式中:
采用前向欧拉法对式(1)进行离散化,可以得到SPMSM的电流预测模型为
式中:
传统无差拍预测电流控制的系统框图如图1所示. DPCC通过采集
图 1
图 1 传统无差拍预测电流控制系统框图
Fig.1 Block diagram of conventional deadbeat predictive current control system
式中:
2. 自适应增量式无差拍预测电流控制
由式(3)可以看出,当
2.1. 增量式预测方程
DPCC的预测精度取决于
将式(3)与式(4)作差可以得到增量式预测方程为
式中:给定电压增量
因为在电机本体中,
可以看出,此时算法的预测精度仅受参数
2.2. 自适应补偿
消去
式中:i*d,q[m]、id,q[m]分别为电流给定值和实际值的示波器第m次采样值,N为总采样点数.
为了减小预测误差,引入自适应补偿量将增量式预测方程中的给定电压增量补偿为
式中:∆u*d,q|com(k)为补偿后的∆u*d,q(k), εd,q(k) 为自适应补偿量,其表达式定义为
式中:电流误差
图 2
图 2
自适应调整函数
Fig.2
Graph of adaptive adjustment function
式中:
2.3. 方法总结
除了
最终,AIDPCC的预测方程为
式中:
3. 实验结果与分析
图 3
图 3 表贴式永磁同步电机实验平台
Fig.3 Experimental bench of surface-mounted permanent magnet synchronous motor
表 1 表贴式永磁同步电机参数
Tab.1
参数 | 数值 | 参数 | 数值 | |
额定电压/V | 36 | 转动惯量/(kg· | 5.88×10−6 | |
额定电流/A | 4.6 | 定子电阻/Ω | 0.375 | |
额定功率/W | 100 | 定子电感/H | 0.001 | |
额定转速/(r·min−1) | 3000 | 永磁体磁链/Wb | 0.010 4 | |
额定转矩/(N·m) | 0.318 | 极对数 | 4 |
图 4
图 4 无差拍预测电流控制在参数失配时电机q轴电流波形
Fig.4 Waveform of q axis current of motor with deadbeat predictive current control parameter mismatch
图 5
图 5 自适应增量式无差拍预测电流控制在参数失配时电机q轴电流波形
Fig.5 Waveform of q axis current of motor with adaptive incremental deadbeat predictive current control parameter mismatch
表 2 2种算法在参数失配时的q轴电流静差对比
Tab.2
参数失配情况 | | |
DPCC | AIDPCC | |
| 0.254 8 | 0.019 9 |
| 0.053 0 | 0.019 9 |
| 1.438 1 | 0.019 9 |
| 0.314 8 | 0.019 9 |
| 0.150 0 | 0.102 3 |
| 1.318 0 | 0.032 6 |
在图4 (a)中,DPCC在
由表2可知,当
图 6
图 6 电机带载加减速时的状态变量波形
Fig.6 Waveform of state variable of motor with load during acceleration and deceleration
4. 结 论
(1)AIDPCC不受定子电阻和永磁体磁链这2个参数的影响,仅受定子电感的影响,具有很好的鲁棒性,且稳态时电流静差较传统算法更小.
(2)在转速控制时,AIDPCC的转速动态性能明显优于传统算法的,AIDPCC能够使转速快速稳定.
(3)AIDPCC无法有效抑制定子电感失配时带来的q轴电流脉动,后续研究将以此展开.
参考文献
基于余弦函数的无传感器永磁风机IF起动平滑切换方法
[J].
IF starting smooth switching method of sensorless permanent magnet fan based on cosine function
[J].
Principle and stability analysis of an improved self-sensing control strategy for surface-mounted PMSM drives using second-order generalized integrators
[J].DOI:10.1109/TEC.2017.2738025 [本文引用: 1]
Analytical prediction of torque ripple in surface-mounted permanent magnet motors due to manufacturing variations
[J].DOI:10.1109/TEC.2016.2598649 [本文引用: 1]
Deadbeat predictive current control for SPMSM at low switching frequency with moving horizon estimator
[J].DOI:10.1109/JESTPE.2019.2960579 [本文引用: 1]
Improved model predictive current control for SPMSM drives with parameter mismatch
[J].DOI:10.1109/TIE.2019.2901648 [本文引用: 1]
Improved model predictive current control for SPMSM drives using current update mechanism
[J].DOI:10.1109/TIE.2020.2973880 [本文引用: 1]
An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs
[J].DOI:10.1109/TIE.2019.2960755 [本文引用: 1]
Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer
[J].DOI:10.1109/TPEL.2016.2592534 [本文引用: 1]
Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system
[J].DOI:10.1109/TVT.2017.2752778 [本文引用: 1]
Performance improvement of model-predictive current control of permanent magnet synchronous motor drives
[J].DOI:10.1109/TIA.2017.2690998 [本文引用: 1]
永磁同步电机改进电流预测控制
[J].DOI:10.3969/j.issn.1000-6753.2013.03.007 [本文引用: 1]
An improved predictive current control method for permanent magnet synchronous motors
[J].DOI:10.3969/j.issn.1000-6753.2013.03.007 [本文引用: 1]
/
〈 |
|
〉 |
