|
|
|
| Experimental study on pre-tightening force of ring groove rivets in steel truss beam’s splicing joints |
Kun WANG1( ),Yongjian LIU1,2,*( ),Taike ZHANG3,Gaoyan CUI1,Fengchao GUO3,Zhenbei LIU1,Wenjie MA1 |
1. School of Highway, Chang’an University, Xi’an 710064, China 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China 3. Guangdong Bay Area Transportation Construction Investment Co. Ltd, Guangzhou 511462, China |
|
|
|
Abstract Monitoring tests on the pre-tightening force of ring groove rivets during the full-scale node riveting process were conducted by taking a steel truss suspension bridge as the supporting project to study the influencing factors of the pre-tightening force in the riveting process and evaluate the stability of the pre-tightening force of the ring groove rivets in the steel truss beam’s splicing joints. The results showed that the ring groove rivets were suitable for riveting from a joint area with high stiffness to a joint area with low stiffness. The pre-tightening force of the tested T27 rivets of grade 10.9 after riveting met the requirements for ring groove rivets and was better than that of high-strength bolts of the same specification. The pre-tightening force of the rivets on the thicker bottom plate changed more than that on the top plate during riveting, and the degree of relaxation was slightly higher. The pre-tightening force change of the rivets on the web plate with higher constraint was also larger than that on the joint plate. A 48-hour post-riveting monitoring test was carried out on the chord web. The results showed that the pre-tightening force attenuation of rivets within 30 h after riveting accounted for 89.6% of the total attenuation, and the fluctuation range of the pre-tightening force thereafter was within 1.3% of the initial pre-tightening force value, indicating that the loss of pre-tightening force after riveting was small, and the force gradually tended to be stable and uniform.
|
|
Received: 04 November 2024
Published: 15 December 2025
|
|
|
| Fund: 广东省交通集团重点研发项目(JT2023ZD01-01). |
|
Corresponding Authors:
Yongjian LIU
E-mail: 785905250@qq.com;liuyongjian@chd.edu.cn
|
钢桁梁拼接节点中环槽铆钉预紧力试验研究
为了研究施铆过程中环槽铆钉预紧力的影响因素,评估钢桁梁拼接节点中环槽铆钉预紧力的稳定性,以钢桁梁悬索桥为依托工程,开展足尺节点施铆过程的铆钉预紧力监测试验. 结果表明,环槽铆钉在从刚度大的接头区域向刚度小的接头区域铆接时,适用性较好;测试的10.9级T27铆钉的铆后预紧力满足环槽铆钉预紧力要求,且优于同规格高强度螺栓;铆接过程中厚度更大的底板上的铆钉预紧力变化量比顶板有所增加,且预紧力松弛程度稍大;约束程度更高的腹板上的铆钉预紧力变化量比节点板更大. 对弦杆腹板进行铆接后48 h监测试验,结果显示铆接完成后30 h内铆钉预紧力衰减量占总衰减量的89.6%,此后预紧力的波动小于1.3%的初始值,表明环槽铆钉铆后预紧力损失较小,且逐渐趋于稳定、统一.
关键词:
钢桁梁桥,
环槽铆钉,
足尺模型试验,
拼接节点,
预紧力
|
|
| [1] |
刘永健, 刘剑, 刘君平, 等 刚性悬索加劲钢桁梁桥施工阶段全桥模型试验研究[J]. 土木工程学报, 2010, 43 (2): 72- 78 LIU Yongjian, LIU Jian, LIU Junping, et al Integral model test of steel truss bridge stiffened with rigid cables in construction stage[J]. China Civil Engineering Journal, 2010, 43 (2): 72- 78
|
|
|
| [2] |
于丰菘, 周洪福, 姜磊, 等 钢桁桥节点构造演变及其疲劳评估热点应力法[J]. 公路交通科技, 2023, 40 (6): 126- 139 YU Fengsong, ZHOU Hongfu, JIANG Lei, et al Joint structure evolution and a hot stress method for assessing fatigue of steel truss bridge[J]. Journal of Highway and Transportation Research and Development, 2023, 40 (6): 126- 139
doi: 10.3969/j.issn.1002-0268.2023.06.017
|
|
|
| [3] |
JASPART J P General report: session on connections[J]. Journal of Constructional Steel Research, 2000, 55 (1/2/3): 69- 89
|
|
|
| [4] |
MOTALEB M, LINDQUIST W, IBRAHIM A, et al Repair assessment for distortion-induced fatigue cracks in a seismically retrofitted double-deck bridge complex[J]. Engineering Structures, 2019, 183: 124- 134
doi: 10.1016/j.engstruct.2019.01.004
|
|
|
| [5] |
ALAMPALLI S, LUND R Estimating fatigue life of bridge components using measured strains[J]. Journal of Bridge Engineering, 2006, 11 (6): 725- 736
doi: 10.1061/(ASCE)1084-0702(2006)11:6(725)
|
|
|
| [6] |
YU Q, YANG X, ZHOU H An experimental study on the relationship between torque and preload of threaded connections[J]. Advances in Mechanical Engineering, 2018, 10 (8): 1- 10
|
|
|
| [7] |
SALEM H M, HELMY H M Numerical investigation of collapse of the Minnesota I-35W bridge[J]. Engineering Structures, 2014, 59: 635- 645
|
|
|
| [8] |
GLIENKE R, SCHWARZ M, EBERT A, et al Joints with lockbolts in steel structures–part 1: lockbolt technology[J]. Steel Construction, 2020, 13 (2): 120- 127
doi: 10.1002/stco.202000011
|
|
|
| [9] |
易志宏, 刘浪, 田波, 等 环槽铆钉在公路桥梁中应用的试验研究[J]. 公路, 2022, 67 (1): 104- 108 YI Zhihong, LIU Lang, TIAN Bo, et al Practice study of ring groove rivets in highway bridges[J]. Highway, 2022, 67 (1): 104- 108
|
|
|
| [10] |
范重, 杨苏, 栾海强 空间结构节点设计研究进展与实践[J]. 建筑结构学报, 2011, 32 (12): 1- 15 FAN Zhong, YANG Su, LUAN Haiqiang Research progress and practice of design of spatial structure joints[J]. Journal of Building Structures, 2011, 32 (12): 1- 15
|
|
|
| [11] |
刘昌永, 吴欣荣, 王玉银, 等 多向拉压整体式钢桁梁节点静力试验研究[J]. 建筑结构学报, 2015, 36 (S1): 131- 137 LIU Changyong, WU Xinrong, WANG Yuyin, et al Model test on an integral joint of steel struss bridge subjected to multi-directional loadings[J]. Journal of Building Structures, 2015, 36 (S1): 131- 137
|
|
|
| [12] |
刘永健, 赵瑞, 姜磊, 等 矩形钢管K型节点复合型应力强度因子计算方法研究[J]. 工程力学, 2023, 40 (5): 182- 194 LIU Yongjian, ZHAO Rui, JIANG Lei, et al Study on calculation method for equivalent stress intensity factor of rectangular hollow section K-joints[J]. Engineering Mechanics, 2023, 40 (5): 182- 194
doi: 10.6052/j.issn.1000-4750.2021.10.0839
|
|
|
| [13] |
姜磊, 刘永健, 龙辛, 等 矩形钢管混凝土桁架节点应力集中特性试验研究[J]. 建筑结构学报, 2022, 43 (2): 184- 196 JIANG Lei, LIU Yongjian, LONG Xin, et al Experimental study on stress concentration characteristics of joints in concrete-filled rectangular steel tubular truss[J]. Journal of Building Structures, 2022, 43 (2): 184- 196
|
|
|
| [14] |
KIYOKAWA S, TATEISHI K, HANJI T, et al Slip coefficient and ultimate strength of high-strength bolted friction joints with compact bolt spacing and edge distance[J]. International Journal of Steel Structures, 2019, 19 (4): 1191- 1201
doi: 10.1007/s13296-018-0199-3
|
|
|
| [15] |
LYU Y F, LI G Q, WANG Y B, et al Bearing behavior of multi-bolt high strength steel connections[J]. Engineering Structures, 2020, 212: 110510
doi: 10.1016/j.engstruct.2020.110510
|
|
|
| [16] |
XUE X, LIN S, GUO Z, et al Mechanical behavior of loose high-strength bolted connections with thin sheet steels[J]. Thin-Walled Structures, 2021, 168: 108281
doi: 10.1016/j.tws.2021.108281
|
|
|
| [17] |
LIU Z, ZHENG M, YAN X, et al Changing behavior of friction coefficient for high strength bolts during repeated tightening[J]. Tribology International, 2020, 151: 106486
doi: 10.1016/j.triboint.2020.106486
|
|
|
| [18] |
KONG Q, LI Y, WANG S, et al The influence of high-strength bolt preload loss on structural mechanical properties[J]. Engineering Structures, 2022, 271: 114955
|
|
|
| [19] |
AHN J H, LEE J M, CHEUNG J H, et al Clamping force loss of high-strength bolts as a result of bolt head corrosion damage: experimental research A[J]. Engineering Failure Analysis, 2016, 59: 509- 525
doi: 10.1016/j.engfailanal.2015.08.037
|
|
|
| [20] |
戴润达, 于红杰, 付常谊, 等 环槽铆钉连接副抗腐蚀性能及夹紧力群铆试验研究[J]. 世界桥梁, 2023, 51 (2): 76- 81 DAI Runda, YU Hongjie, FU Changyi, et al Experimental study of corrosion resistance and clamping force of ring grooved rivet connection pair[J]. World Bridges, 2023, 51 (2): 76- 81
|
|
|
| [21] |
WANG Z, WANG Y, ZHANG Y, et al Experimental investigation and design of extruded aluminium alloy T-stubs connected by swage-locking pins[J]. Engineering Structures, 2019, 200: 109675
doi: 10.1016/j.engstruct.2019.109675
|
|
|
| [22] |
WANG Z, WANG Y, YUN X, et al Numerical modelling of extruded aluminium alloy T-stubs connected by swage-locking pins: FE validation and parametric study[J]. Thin-Walled Structures, 2020, 155: 106926
doi: 10.1016/j.tws.2020.106926
|
|
|
| [23] |
WANG Y, WANG Z, YIN F, et al Experimental study and finite element analysis on the local buckling behavior of aluminium alloy beams under concentrated loads[J]. Thin-Walled Structures, 2016, 105: 44- 56
doi: 10.1016/j.tws.2016.04.003
|
|
|
| [24] |
CHEN W, DENG H, DONG S, et al Numerical modelling of lockbolted lap connections for aluminium alloy plates[J]. Thin-Walled Structures, 2018, 130: 1- 11
doi: 10.1016/j.tws.2018.04.010
|
|
|
| [25] |
张天雄, 王元清, 陈志华, 等 高强度不锈钢短尾环槽铆钉力学性能试验研究[J]. 工程力学, 2021, 38 (S1): 151- 158 ZHANG Tianxiong, WANG Yuanqing, CHEN Zhihua, et al Experimental study on the mechanical properties of high strength stainless steel short tail swage-locking pins[J]. Engineering Mechanics, 2021, 38 (S1): 151- 158
doi: 10.6052/j.issn.1000-4750.2020.05.S027
|
|
|
| [26] |
邓华, 陈伟刚, 白光波, 等 铝合金板件环槽铆钉搭接连接受剪性能试验研究[J]. 建筑结构学报, 2016, 37 (1): 143- 149 DENG Hua, CHEN Weigang, BAI Guangbo, et al Experimental study on shearing behavior of lockbolted lap connection for aluminum alloy plates[J]. Journal of Building Structures, 2016, 37 (1): 143- 149
|
|
|
| [27] |
王金锁, 张钦, 徐玉波, 等. 螺栓与环槽铆钉的抗剪性能对比试验研究[J/OL]. 工业建筑, 2023: 1–12. (2023-12-15). https://kns.cnki.net/kcms/detail/11.2068.TU.20231215.1024.002.html. WANG Jinsuo, ZHANG Qin, XU Yubo, et al. Comparative experimental study on shear performance of bolts and ring-groove rivets [J/OL]. Industrial Construction, 2023: 1–12. (2023-12-15). https://kns.cnki.net/kcms/detail/11.2068.TU.20231215.1024.002.html.
|
|
|
| [28] |
徐菲, 陆一安, 周绪红, 等 高强度环槽铆钉ML40Cr材料单轴拉伸及低周疲劳性能研究[J]. 建筑结构学报, 2024, 45 (10): 217- 228 XU Fei, LU Yian, ZHOU Xuhong, et al Uniaxial tensile and low-cycle fatigue performance of high-strength lockbolt ML40Cr materials[J]. Journal of Building Structures, 2024, 45 (10): 217- 228
|
|
|
| [29] |
王中兴, 韩晔声, 孙健婕, 等. 高温下拉断型环槽铆钉力学性能试验研究[J/OL]. 土木工程学报, 2024: 1–13. (2024-05-27) [2024-11-25]. https://link.cnki.net/doi/10.15951/j.tmgcxb.24020162. WANG Zhongxing, HAN Yesheng, SUN Jianjie, et al. Experimental investigation into the mechanical behavior of SLP utilizing separating pintails at elevated temperatures [J/OL]. China Civil Engineering Journal, 2024: 1–13. (2024-05-27) [2024-11-25]. https://link.cnki.net/doi /10.15951/j.tmgcxb.24020162.
|
|
|
| [30] |
中华人民共和国住房和城乡建设部. 钢结构刚强度螺栓链接技术规程: JGJ 82—2021 [S]. 北京: 中国建筑工业出版社, 2011: 32.
|
|
|
| [31] |
王贤强, 杨羿, 刘朵, 等 节点板高强螺栓预紧力松弛试验研究[J]. 钢结构, 2019, 34 (11): 40- 44 WANG Xianqiang, YANG Yi, LIU Duo, et al Experimental research on pre-tightening force relaxation of high-strength bolt in joint plate[J]. Steel Construction, 2019, 34 (11): 40- 44
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|