Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2645-2654    DOI: 10.3785/j.issn.1008-973X.2025.12.019
    
Highway energy evaluation system based on improved Delphi-entropy weight method
Yanbo LI1,2(),Yu BU1,Ruochen LI3,Qisheng WU1,Jianmin WEI4,Junshuo CHEN1,*()
1. School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China
2. Shaanxi Provincial Key Laboratory of New Transportation Energy and Automotive Energy Saving, Chang’an University, Xi’an 710064, China
3. XD Smart Energy Technology Co. Ltd, Xi’an 710075, China
4. State Grid Gansu Electric Power Company Construction Branch, Lanzhou 730000, China
Download: HTML     PDF(1142KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A comprehensive energy efficiency evaluation index system was established based on a framework that integrated both subjective and objective factors for determining indicator weights, to address the energy efficiency evaluation challenges in highway self-consistent energy systems. First, guided by indicator selection principles and methodologies, an energy efficiency evaluation index tree for highway self-consistent energy systems was constructed, encompassing four key dimensions: energy performance, environmental sustainability, reliability, and economic feasibility. Corresponding quantitative calculation methods were defined for each indicator. Next, in determining indicator weights, expert knowledge was incorporated to refine an improved Delphi method based on CRITIC, forming a subjective evaluation approach. Simultaneously, an enhanced entropy weight method adjusted by similarity error was adopted as the objective evaluation method. The subjective and objective weights were then optimally integrated using a variance minimization approach. Subsequently, the set pair analysis (SPA) method was applied to identify the optimal solution among multiple system design alternatives. Finally, the model was implemented to evaluate six highway self-consistent energy system configurations, with the optimal solution determined as: a grid-connected system combining 800 photovoltaic panels and 10 wind turbines, which showed strong consistency with the ideal solution. The proposed evaluation method effectively leveraged indicator data, comprehensively considered subjective and objective factors, and enhanced the scientific rigor and practical applicability of the results. It provides a robust scientific foundation for the assessment and optimization of highway self-consistent energy systems.



Key wordshighway energy system      energy efficiency assessment      Delphi method      entropy weight method      set pair analysis (SPA)     
Received: 08 April 2025      Published: 25 November 2025
CLC:  U 492  
Fund:  国家重点研发计划资助项目(2021YFB1600200);河南交通投资集团有限公司科技项目(HNJT2024-35).
Corresponding Authors: Junshuo CHEN     E-mail: ybl@chd.edu.cn;jsch@chd.edu.cn
Cite this article:

Yanbo LI,Yu BU,Ruochen LI,Qisheng WU,Jianmin WEI,Junshuo CHEN. Highway energy evaluation system based on improved Delphi-entropy weight method. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2645-2654.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.019     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2645


基于改进德尔菲-熵权法的高速公路能源评价体系

为了解决高速公路自洽能源系统的能效评价问题,以综合考虑主客观影响的评价指标权重确定方法为基本框架,构建高速公路自洽能源系统的能效评价指标体系. 依据评价指标选取原则和方法,建立包含能源性、环保性、可靠性和经济性4类指标的高速公路自洽能源系统能效评价指标树,并针对各评价指标定义相应的量化计算方法. 在确定评价指标权重时,引入专家经验对基于CRITIC法改进的德尔菲法进行进一步改进,得到主观评价方法;采用由相似性误差修正的改进熵权法作为客观评价方法,并基于方差最小化思想对主客观权重进行组合赋权. 运用集对分析法从多个系统建设方案中筛选出最优方案. 通过应用该模型对6种高速公路自洽能源系统方案进行评价分析,得出最优方案:电网搭配800片光伏板和10台风力发电机,与理想方案有较强的一致性. 所提出的评价方法能够充分利用指标数据,综合考虑主客观因素,提高评估结果的科学性和实用性,可为高速公路自洽能源系统的评价与优化提供科学依据.


关键词: 高速公路能源系统,  能效评估,  德尔菲法,  熵权法,  集对分析法(SPA) 
Fig.1 Self-consistent energy system model for expressways
Fig.2 Efficiency evaluation index tree of self-consistent energy system for highways
Fig.3 Delphi method flowchart
Fig.4 Flowchart of Delphi method improved by CRITIC considering expert experience
工作年限分值A职称分值B论文分值C
>3030教授/正高工30SCI一、二区2.0
20~3020副教授/高工25SCI三区1.0
10~2010讲师/工程师15SCI四区0.8
<105博士在读10EI0.5
Tab.1 Expert weight scoring table
Fig.5 Efficiency evaluation index system model for self-consistent energy systems in highways
名称功率成本其他
隆基Hi-MO X10光伏板635~650 W850~900 元/片转换效率最高可达24.8%
广州红鹰能源科技股份有限公司HY-10 kW风力发电机额定功率10 kW10~20 万元/台一般达到80%负荷出力
潍柴600 kW柴油发电机组(6M33D725E310)600 kW(常用)、650 kW(备用)37.6 万元/台耗油量约为148.24 L/h
Tab.2 List of relevant equipment information
评价指标A1/%A2/%A3/%A4/%A5/gA6/gA7/gA8/%A9/hA10/万元A11/万元A12/万元A13/万元
方案193.566.824.65.43251.4910.349.531.061001.6334.5638.498.6
方案292.665.435.83.28266.9890.450.760.95896.7367.8549.6103.5
方案394.163.718.24.36247.8894.445.621.15984.6485.2635.4117.3
方案483.658.426.35.61385.81407.670.151.081003.4593.1716.5109.8
方案576.871.938.25.17389.21422.872.680.911096.3482.7506.7124.7
方案669.767.323.94.98398.31541.777.240.861048.5401.6498.6105.1
Tab.3 Specific parameters of each evaluation index under different self-consistent energy system schemes
评价指标打分
专家1专家2专家3专家4专家5专家6
A1908570958565
A2859565808070
A3809060909260
A4458055859045
A5405040556535
A6354535506040
A7303530455530
A8754050357555
A9705545407050
A10657585655090
A11607080704580
A12556590754085
A13506075603575
Tab.4 Expert group scoring results
专家组$ {\theta _{1i}} $$ {\theta _{2i}} $$ {\theta _i} $
专家10.28830.18340.2923
专家20.23310.21600.2783
专家30.20830.16740.1928
专家40.14730.19240.1567
专家50.06610.08240.0301
专家60.05690.15840.0498
Tab.5 Expert weight coefficient
指标SsubSobjScom
A10.10380.06340.0823
A20.10140.07870.0893
A30.09840.08690.0922
A40.07860.04810.0624
A50.05610.09130.0748
A60.05060.09310.0732
A70.04240.08370.0643
A80.06630.04630.0557
A90.06860.04390.0555
A100.08970.09290.0914
A110.08500.09180.0886
A120.08500.09230.0889
A130.07420.08750.0813
Tab.6 Comprehensive weight evaluation results of subjective and objective methods
Fig.6 Radar chart of consistency for each evaluation scheme
Fig.8 Radar chart of opposition for each evaluation scheme
Fig.7 Radar chart of discrepancy for each evaluation scheme
Fig.9 Relative closeness of each evaluation scheme to optimal scheme
[1]   马静, 徐宏璐, 马瑞辰, 等 能源交通融合下的弹性公路能源系统发展技术要点及展望[J]. 电网技术, 2023, 47 (3): 885- 896
MA Jing, XU Honglu, MA Ruichen, et al A review on the development of resilient highway energy system under the integration of energy and transportation[J]. Power System Technology, 2023, 47 (3): 885- 896
[2]   LI Y, MA W, ZHANG Z, et al. Energy efficiency evaluation of multi-energy microgrid based on entropy-independence-gl method [C]// IEEE 5th International Electrical and Energy Conference. Nangjing: IEEE, 2022: 2232–2237.
[3]   CUI J, LIANG Q, YIN X, et al The policy efficiency evaluation of the Beijing-Tianjin-Hebei regional government guidance fund based on the entropy method[J]. Applied Mathematics and Nonlinear Sciences, 2022, 7 (2): 433- 446
doi: 10.2478/amns.2021.1.00049
[4]   SAXENA P, KUMAR V, RAM M A novel CRITIC-TOPSIS approach for optimal selection of software reliability growth model (SRGM)[J]. Quality and Reliability Engineering International, 2022, 38 (5): 2501- 2520
doi: 10.1002/qre.3087
[5]   ZHAO X, KONG X, LIU H, et al. Comprehensive evaluation of multi-energy microgrid based on prospect cross-super-efficiency model [C]// IEEE Power and Energy Society General Meeting. Denver: IEEE, 2022: 1–5.
[6]   刘义艳, 郝婷楠, 李艳波, 等 高公路自洽能源系统综合能效评估方法[J]. 长安大学学报: 自然科学版, 2024, 44 (5): 27- 35
LIU Yiyan, HAO Tingnan, LI Yanbo, et al Comprehensive energy efficiency evaluation method for expressway self-contained energy systems[J]. Journal of Chang’an University: Natural Science Edition, 2024, 44 (5): 27- 35
[7]   霍千辰, 肖仕武, 黄一修. 基于改进组合权重的高速公路微电网运维评价指标体系 [EB/OL]. (2023−12−06). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=HBDL20231203001&dbname=CJFD&dbcode=CJFQ.
[8]   LI W, WANG D, ZHOU Q, et al. Energyefficiency evaluation of photovoltaic power generation system based on analytic hierarchy process and fuzzy comprehensive evaluation [C]// IEEE 5th Conference on Energy Internet and Energy System Integration. Taiyuan: IEEE, 2021: 1029–1034.
[9]   ZHOU M, HAN J, LU J Actor-critic method for high dimensional static Hamilton-Jacobi- Bellman partial differential equations based on neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43 (6): A4043- A4066
doi: 10.1137/21M1402303
[10]   LI M, YAO X Quality evaluation of solution sets in multiobjective optimisation[J]. ACM Computing Surveys, 2020, 52 (2): 1- 38
[11]   柳柏松. 高速公路自洽能源系统综合评价及优化调度研究 [D]. 西安: 长安大学, 2023.
LIU Baisong. A study on the comprehensive evaluation and optimal dispatch of the self-sufficient energy system of expressways [D]. Xi’an : Chang’an University, 2023.
[12]   ZHU W, WU J, YANG L, et al Construction of nursing care quality evaluation indicators for post-anaesthesia care unit in China[J]. Journal of Clinical Nursing, 2023, 32 (1/2): 137- 146
[13]   COOPER C, FRANKLIN D, ROS M, et al A comparative survey of VANET clustering techniques[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (1): 657- 681
doi: 10.1109/COMST.2016.2611524
[14]   曹宇. 海岛微电网的运行策略与综合评价研究 [D]. 上海: 上海交通大学, 2020.
CAO Yu. Research on operation strategy and comprehensive evaluation of island microgrid [D]. Shanghai Jiao Tong University, 2020.
[15]   WANG J X, ZUO T T, XUE J L, et al Investigation on the novel high-performance copper/graphene composite conductor for high power density motor[J]. Transactions on Electrical Machines and Systems, 2024, 80- 85
[16]   严梦帆, 龙吉生 基于德尔菲法和TOPSIS法的垃圾焚烧发电厂综合评价方法[J]. 环境工程, 2023, 41 (7): 229- 234
YAN Mengfan, LONG Jisheng A comprehensive evaluation method of waste incineration power plant based on Delphi method and topsis method[J]. Environmental Engineering, 2023, 41 (7): 229- 234
[17]   KESAVAN P K, SUBRAMANIAM U, ALMAKHLES D J Laboratory implementation of direct torque controller based speed loop pseudo derivative feedforward controller for PMSM drive[J]. CES Transactions on Electrical Machines and Systems, 2024, 12- 21
[18]   CAVES C M Information and entropy[J]. Physical Review E, 1993, 47 (6): 4010- 4017
doi: 10.1103/PhysRevE.47.4010
[19]   KUMAR R, SINGH S, BILGA P S, et al Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review[J]. Journal of Materials Research and Technology, 2021, 10: 1471- 1492
doi: 10.1016/j.jmrt.2020.12.114
[20]   计蓉, 侯慧娟, 盛戈皞, 等 基于组合赋权法和模糊综合评价的电力设备状态数据质量评估[J]. 高电压技术, 2024, 50 (1): 274- 281
JI Rong, HOU Huijuan, SHENG Gehao, et al Data quality assessment for power equipment condition based on combination weighing method and fuzzy synthetic evaluation[J]. High Voltage Engineering, 2024, 50 (1): 274- 281
[21]   XIAO L, ZHANG T A proximal stochastic gradient method with progressive variance reduction[J]. SIAM Journal on Optimization, 2014, 24 (4): 2057- 2075
doi: 10.1137/140961791
[22]   KUMAR K, GARG H TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment[J]. Computational and Applied Mathematics, 2018, 37 (2): 1319- 1329
doi: 10.1007/s40314-016-0402-0
[1] Juan-juan REN,Kuan LIU,Wei-hua WANG,Ying ZHANG,Ke-xin YANG,Ming-ming LIU. Evaluation of cracking condition for CRTS Ⅲ prefabricated slab track based on interval analytic hierarchy process[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2267-2274.