Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1253-1264    DOI: 10.3785/j.issn.1008-973X.2025.06.016
    
Hydration characteristics and mechanical performance of lime and gypsum-activated low carbon cementitious materials
Meng WU1,2,3(),Yunsheng ZHANG2,*(),Zhiyong LIU2,Cheng LIU2,Wei SHE2,Liguo WANG2,Rui MA3
1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3. Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
Download: HTML     PDF(3012KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The composite slag and fly ash were used as the main precursors to design and prepare a novel type of lime and gypsum-activated low carbon cementitious material (LCM), to decrease the environmental loading of the cement industry. The evolution rules of mechanical properties of LCM mixtures with different mass ratios and the hydration characteristics of LCM were analyzed via quantitative X-ray diffraction (QXRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), mercury intrusion porosimetry (MIP) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) method. Results showed that the hydration products of LCM were mainly composed of ettringite, C-(A)-S-H gel with a low Ca/Si atomic ratio, and a small amount of AFm-CO3. A large amount of ettringite formed in the early stage of hydration, causing the heat flow curve of LCM to exhibit a new exothermic peak during the decelerating period of hydration. After long-term hydration, rod-like ettringite crystals were embedded into C-(A)-S-H gel as the skeleton, forming a dense paste, and the pore structure of LCM had a high tortuosity and low connectivity. The mechanical performance of LCM at various ages was significantly increased by optimizing the mixture proportion. The compressive strength of C3 mortar at 28 days could reach 53.5 MPa, which represented an increase of 37.9% compared to the control group, and the strength continued to increase over time. A small amount of Portland cement was introduced into the LCM, which effectively increased the alkalinity of the liquid phase, promoted the hydration reaction of the mineral admixtures and increased the overall hydration rate of LCM, thereby improving the mechanical properties of LCM in the mid-to-late stages.



Key wordslime      cementitious material      hydration product      pore structure      C-(A)-S-H     
Received: 29 August 2024      Published: 30 May 2025
CLC:  TU 528  
Fund:  国家自然科学基金资助项目(52208228, U21A20150, 52078125);国家重点研究计划资助项目(2019YFC19044900);安徽省先进建筑材料重点实验室开放课题资助项目(JZCL202406KF).
Corresponding Authors: Yunsheng ZHANG     E-mail: wumengseu@qq.com;zhangys279@163.com
Cite this article:

Meng WU,Yunsheng ZHANG,Zhiyong LIU,Cheng LIU,Wei SHE,Liguo WANG,Rui MA. Hydration characteristics and mechanical performance of lime and gypsum-activated low carbon cementitious materials. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1253-1264.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1253


石灰激发低碳胶凝材料的水化特性与力学性能

为了降低传统水泥工业对环境的负荷,将矿渣粉与粉煤灰复合作为主要前驱体,设计和制备了新型石灰石膏激发低碳胶凝材料(LCM). 采用X射线衍射定量分析(QXRD)、热重分析(TGA)、傅里叶变换红外光谱(FTIR)、压汞法(MIP)、扫描电镜-能谱仪分析(SEM-EDS)等测试方法分析LCM水化特性并探究采用不同质量比的LCM的力学性能演变规律. 结果表明:LCM水化产物主要包括钙矾石、低钙硅原子比C-(A)-S-H凝胶及少量AFm-CO3;在水化早期,钙矾石大量形成,会导致LCM的热流曲线在水化减速期出现新的水化放热峰;在长期水化后,杆棒状钙矾石晶体作为骨架嵌入C-(A)-S-H凝胶当中并形成致密整体,此时LCM孔隙结构具有较高的曲折度与较低的连通度. 通过优化LCM质量比,可显著提升LCM各龄期的力学性能,其中C3砂浆28 d抗压强度可达53.5 MPa,与对照组相比,抗压强度提高37.9%,且后期强度持续增加. 在LCM中掺入少量硅酸盐水泥,能提高液相碱性,从而有效促进矿物掺和料的水化反应,并提高LCM整体水化速率,进而提升LCM中后期力学性能.


关键词: 石灰,  胶凝材料,  水化产物,  孔隙结构,  C-(A)-S-H 
原材料wB/%
SiO2CaOAl2O3Fe2O3MgOSO3K2ONa2OLOI
硅酸盐水泥21.6064.384.383.423.432.230.512.54
粉煤灰51.534.4030.416.900.910.911.370.621.52
矿渣粉32.7237.1215.510.245.502.610.300.400.36
石灰0.4797.300.410.231.000.100.3226.75
石膏0.3046.890.140.070.2052.090.117.01
Tab.1 Chemical compositions of raw materials
编号$w_{\mathrm{B}} $/%S
硅酸盐水泥复合矿物掺和料石灰
C190 (粉煤灰∶矿渣粉=1∶1)100.3
C21085 (粉煤灰∶矿渣粉=1∶1)50.3
C31080 (粉煤灰∶矿渣粉=1∶1)100.3
C41075 (粉煤灰∶矿渣粉=1∶1)150.3
C52070 (粉煤灰∶矿渣粉=1∶1)100.3
C61080 (粉煤灰∶矿渣粉=2∶1)100.3
C71080 (粉煤灰∶矿渣粉=1∶2)100.3
Tab.2 Mass fraction comparison of LCM
Fig.1 XRD patterns of LCM samples
Fig.2 Quantitative analysis results of XRD patterns of LCM samples
Fig.3 FTIR spectra of LCM samples
Fig.4 TGA curves of LCM samples after 90 days
样品wB/%
氢氧化钙(TGA)氢氧化钙(QXRD)化学结合水
C1-90 d3.93.713.8
C2-90 d4.24.113.5
C3-90 d6.56.714.7
C4-90 d10.811.715.4
C5-90 d9.710.315.7
Tab.3 Content of Ca(OH)2 and chemically bound water in LCM samples at 90 days
Fig.5 SEM images of microstructure of C3 samples at 3 and 90 days
Fig.6 Result of MIP test of LCM samples at 90 days
样品P/%Pe/%η/%τ
C1-0.321.56.128.47.2
C3-0.315.84.629.37.0
C5-0.313.44.130.46.9
C3-0.531.314.947.74.6
PC-0.527.614.853.64.0
Tab.4 Parameters of pore structure of LCM samples
Fig.7 Hydration rate and cumulative heat of hydration of LCM samples
Fig.8 Influence of mass fraction of gypsum on heat of hydration of LCM
Fig.9 pH value of pore solution from LCM fresh and hardened paste
Fig.10 Evolution rule of mechanical strength of LCM samples
M/(kg·kg?1)
原材料LCM
水泥熟料0.880C10.12
消石灰0.750C20.17
矿渣粉0.083C30.21
粉煤灰0.008C40.24
石膏0.200C50.29
硅酸盐水泥0.850C60.20
C70.21
Tab.5 Carbon emission of raw materials and LCM samples
[1]   International Energy Agency. CO2 emissions in 2023 [EB/OL]. (2023-03-01)[2024-08-28]. https://www.iea.org/reports/co2-emissions-in-2023.
[2]   王鑫, 李玉华, 何立环, 等 中国水泥行业2011—2022年二氧化碳和大气污染物排放分析[J]. 中国环境监测, 2024, 40 (2): 8- 18
WANG Xin, LI Yuhua, HE Lihuan, et al Analysis on the emissions of carbon dioxide and air pollutants in China’s cement industry from 2011 to 2022[J]. Environmental Monitoring in China, 2024, 40 (2): 8- 18
[3]   兰燕, 顾棋, 彭宇, 等 不同CO2养护压力下硫铝酸盐和硅酸盐水泥浆体早期微观结构[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2454- 2462
LAN Yan, GU Qi, PENG Yu, et al Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2454- 2462
[4]   中华人民共和国生态环境部. 2022年中国生态环境统计年报[R]. 北京, 2023.
[5]   张楚杰, 王玉高, 姚振朝, 等 粉煤灰矿化CO2研究进展[J]. 洁净煤技术, 2024, 30 (2): 300- 315
ZHANG Chujie, WANG Yugao, YAO Zhenchao, et al Research progress of coal fly ash for CO2 mineralization process[J]. Clean Coal Technology, 2024, 30 (2): 300- 315
[6]   BÍLEK V, NOVOTNÝ R, KOPLÍK J, et al Philosophy of rational mixture proportioning of alkali-activated materials validated by the hydration kinetics of alkali-activated slag and its microstructure[J]. Cement and Concrete Research, 2023, 168: 107139
doi: 10.1016/j.cemconres.2023.107139
[7]   KIM M J, ISHIDA T, CHO W J Characteristics of micro structure and strength development of alkali activated GGBS-FNS hybrid cement[J]. Construction and Building Materials, 2023, 408: 133773
doi: 10.1016/j.conbuildmat.2023.133773
[8]   GIANNOPOULOU I, ROBERT P M, PETROU M F, et al Mechanical behavior of construction and demolition waste-based alkali activated materials exposed to fire conditions[J]. Construction and Building Materials, 2024, 415: 134994
doi: 10.1016/j.conbuildmat.2024.134994
[9]   LIU T, CHEN Y, YUAN B, et al Sodium aluminate activated waste glass: reduced efflorescence behavior by C(N)−A−S−H transformation[J]. Cement and Concrete Research, 2024, 181: 107527
doi: 10.1016/j.cemconres.2024.107527
[10]   ZUO Y, YE G GeoMicro3D: a novel numerical model for simulating the reaction process and microstructure formation of alkali-activated slag[J]. Cement and Concrete Research, 2021, 141: 106328
doi: 10.1016/j.cemconres.2020.106328
[11]   KOMKOVA A, HABERT G Environmental impact assessment of alkali-activated materials: examining impacts of variability in constituent production processes and transportation[J]. Construction and Building Materials, 2023, 363: 129032
doi: 10.1016/j.conbuildmat.2022.129032
[12]   BURCIAGA-DÍAZ O Parameters affecting the properties and microstructure of quicklime (CaO) - activated slag cement pastes[J]. Cement and Concrete Composites, 2019, 103: 104- 111
doi: 10.1016/j.cemconcomp.2019.05.002
[13]   VASHISTHA P, MOGES K A, PYO S Alkali activation of paper industry lime mud and assessment of its application in cementless binder[J]. Developments in the Built Environment, 2023, 14: 100146
doi: 10.1016/j.dibe.2023.100146
[14]   ZHAO Y, QIU J, ZHANG S, et al Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders[J]. Construction and Building Materials, 2020, 250: 118603
doi: 10.1016/j.conbuildmat.2020.118603
[15]   BURCIAGA-DÍAZ O, BETANCOURT-CASTILLO I E, MONTES-ESCOBEDO M E, et al One-part pastes and mortars of CaO-Na2CO3 activated blast furnace slag: microstructural evolution, cost and CO2 emissions[J]. Construction and Building Materials, 2023, 368: 130431
doi: 10.1016/j.conbuildmat.2023.130431
[16]   WU M, ZHANG Y, JI Y, et al Reducing environmental impacts and carbon emissions: study of effects of superfine cement particles on blended cement containing high volume mineral admixtures[J]. Journal of Cleaner Production, 2018, 196: 358- 369
doi: 10.1016/j.jclepro.2018.06.079
[17]   任增增, 赵卫全, 陈亮, 等 低pH胶凝材料pH测试方法研究[J]. 水利水电技术, 2022, (12): 125- 133
REN Zengzeng, ZHAO Weiquan, CHEN Liang, et al Investigation into the pH measurement methodology of low pH cementitious materials[J]. Water Resources and Hydropower Engineering, 2022, (12): 125- 133
[18]   RICHARDSON I G Model structures for C-(A)-S-H(I)[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014, 70 (6): 903- 923
doi: 10.1107/S2052520614021982
[19]   APPELO C A J The anion exchange properties of AFm (hydrocalumite-group) minerals defined from solubility experiments and crystallographic information[J]. Cement and Concrete Research, 2021, 140: 106270
doi: 10.1016/j.cemconres.2020.106270
[20]   AVET F, SCRIVENER K Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3)[J]. Cement and Concrete Research, 2018, 107: 124- 135
doi: 10.1016/j.cemconres.2018.02.016
[21]   SUN G, ZHANG J, YAN N Microstructural evolution and characterization of ground granulated blast furnace slag in variant pH[J]. Construction and Building Materials, 2020, 251: 118978
doi: 10.1016/j.conbuildmat.2020.118978
[22]   SCRIVENER K, SNELLINGS R, LOTHENBACH B. A practical guide to microstructural analysis of cementitious materials [M]. Boca Raton: CRC Press, 2016.
[23]   SEO J, KIM S, PARK S, et al Microstructural evolution and carbonation behavior of lime-slag binary binders[J]. Cement and Concrete Composites, 2021, 119: 104000
doi: 10.1016/j.cemconcomp.2021.104000
[24]   ZUNINO F, SCRIVENER K Microstructural developments of limestone calcined clay cement (LC3) pastes after long-term (3 years) hydration[J]. Cement and Concrete Research, 2022, 153: 106693
doi: 10.1016/j.cemconres.2021.106693
[25]   AVET F, BOEHM-COURJAULT E, SCRIVENER K Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3)[J]. Cement and Concrete Research, 2019, 115: 70- 79
doi: 10.1016/j.cemconres.2018.10.011
[26]   石加顺. 非饱和水泥基材料气体渗透性研究 [D]. 南京: 东南大学, 2020.
SHI Jiashun. Study on gas permeability of unsaturated cementitious materials [D]. Nanjing: Southeast University, 2020.
[27]   ZHANG Y, WU K, YANG Z, et al A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry[J]. Cement and Concrete Research, 2022, 161: 106942
doi: 10.1016/j.cemconres.2022.106942
[28]   ZUNINO F, SCRIVENER K The influence of the filler effect on the sulfate requirement of blended cements[J]. Cement and Concrete Research, 2019, 126: 105918
doi: 10.1016/j.cemconres.2019.105918
[29]   ZUNINO F, SCRIVENER K Insights on the role of alumina content and the filler effect on the sulfate requirement of PC and blended cements[J]. Cement and Concrete Research, 2022, 160: 106929
doi: 10.1016/j.cemconres.2022.106929
[30]   HUANG Z, WANG Q The effect of temperature on dissolution activity of fly ash and metakaolin in alkaline conditions[J]. Cement and Concrete Composites, 2024, 146: 105363
doi: 10.1016/j.cemconcomp.2023.105363
[31]   DURDZIŃSKI P T, BEN HAHA M, BERNAL S A, et al Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements[J]. Materials and Structures, 2017, 50 (2): 135
doi: 10.1617/s11527-017-1002-1
[32]   SKIBSTED J, SNELLINGS R Reactivity of supplementary cementitious materials (SCMs) in cement blends[J]. Cement and Concrete Research, 2019, 124: 105799
doi: 10.1016/j.cemconres.2019.105799
[33]   中国城市温室气体工作组. 中国产品全生命周期温室气体排放系数集-2022 [M]. 北京: 中国环境出版集团, 2022.
[1] Muyuan SONG,Yijiang WANG,Wei YANG,Fengfei LANG,Wei CHEN,Xueying LIU. Impermeability and shear strength of phosphogypsum-based impermeable materials under drying-wetting cycles[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1902-1911.
[2] Yali XUE,Hanyan LI,Quan OUYANG,Shan CUI,Jun HONG. Multi-UAVs collaborative task allocation based on genetic slime mould algorithm in battlefield environment[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1748-1756.
[3] Hai-dong FAN,Zhu CHEN,Zhong-yang ZHAO,Cheng-si LIANG,Cheng-hang ZHENG,Xiang GAO. Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 675-682.
[4] MENG Jia-hui, LIAO Zu-wei, JIANG Bin-bo, HUANG Zheng-liang, WANG Jing-dai, YANG Yong-rong. Influence of steam treatment on ZSM-5 catalyst and MTP reaction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2451-2458.
[5] ZHANG Sheng zhou, SUN Ling ling, WEN Jin cai, LIU Jun. High performance D-band passive mixer in dual drain/resistive modes[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1815-1822.
[6] ZHU Kai,HUANG Zhi-yi,WU Ke,WU Bing,ZHANG Xin,ZHANG Chi. Hydrated lime modification of asphalt mixtures with improved fire performance[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 963-968.
[7] XING Tao, HU Qing rong, LI Jun, WANG Guan yong. Synthetic aperture radar imaging of airborne millimeter wave with high resolution and high squint[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2355-2362.
[8] WU Rong-bing, XIAO Gang, CHEN Dong, ZHOU Hui-long, NI Ming-jiang, GAO Xiang, CEN Ke-fa.
Characteristics of electrically conductive charcoal prepared by high temperature carbonization of lignin
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1752-1757.
[9] WANG Hui-ting, DING Hong-lei, YAO Guo-xin, ZHANG Yong-xin,. Experimental study on SO2 absorption rate enhanced by additive in limestone-gypsum WFGD process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 50-55.
[10] CHEN Jun, JIN Nan-guo, JIN Xian-yu, HONG Tian-cong. Permeability evolution of concrete by electrical resistivity measurement[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 575-580.
[11] QIU Guo-Hua, SHI Zheng-Lun, TU Chun-Jiang, et al. Experimental research on utilization of coal gangue as clay for optimized formula on cement clinker calcination[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 315-319.