Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (5): 902-911    DOI: 10.3785/j.issn.1008-973X.2025.05.003
    
High-performance lightweight frame extrapolation technique based on optical flow reprojection
Haoyu QIN(),Jie GUO*(),Haonan ZHANG,Zesen FENG,Liang PU,Jiawei ZHANG,Yanwen GUO
Department of Computer Science and Technology, Nanjing University, Nanjing 210033, China
Download: HTML     PDF(1410KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A high-performance lightweight frame extrapolation technique based on optical flow reprojection was proposed in order to solve the problem of high time overhead in real-time rendering process. An optical flow reprojection module was proposed, which predicted the optical flow information between adjacent frames based on deep learning and applied optical flow reprojection to historical frames. Then the issue of areas such as shadows and highlights lacking motion information was addressed. The proposed method incorporated various lightweight designs, including low-resolution network inference and image inpainting based on SE (squeeze-and-excitation) modules, significantly reducing the computational overhead. The experimental results demonstrate that the proposed method achieves a threefold improvement in time performance compared to state-of-the-art frame extrapolation techniques.



Key wordsreal-time rendering      frame extrapolation      optical flow reprojection      image inpainting     
Received: 01 July 2024      Published: 25 April 2025
CLC:  TP 391  
Fund:  中央高校基本科研业务费专项资金资助项目(2024300326).
Corresponding Authors: Jie GUO     E-mail: 449139777@qq.com;guojie@nju.edu.cn
Cite this article:

Haoyu QIN,Jie GUO,Haonan ZHANG,Zesen FENG,Liang PU,Jiawei ZHANG,Yanwen GUO. High-performance lightweight frame extrapolation technique based on optical flow reprojection. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 902-911.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.05.003     OR     https://www.zjujournals.com/eng/Y2025/V59/I5/902


基于光流重投影的高性能轻量级帧外插技术

为了解决实时渲染过程时间开销较大的问题,提出基于光流重投影的高性能轻量级帧外插技术.提出光流重投影模块,基于深度学习预测相邻帧之间的光流信息,对历史帧执行光流重投影,解决了阴影、高光区域没有运动信息的问题. 该方法引入多种轻量化设计,包括低分辨率网络推理、基于SE模块的图像填补,大幅减少了方法的时间开销. 经过实验验证可知,相对于最前沿的帧外插技术,该方法能够达到3倍的时间性能提升.


关键词: 实时渲染,  帧外插,  光流重投影,  图像填补 
Fig.1 Overall framework of frame extrapolation network
Fig.2 Image inpainting module
Fig.3 Gated convolution module
Fig.4 SE module
Fig.5 Optical flow reprojection module
方法P/106F/109GPU/MBT/ms
ExtraNet0.2650.88183928.56
本方法原始版本0.166.2283110.76
本方法Fast版本0.154.273766.42
Tab.1 Comparison of time cost/model size between proposed method and ExtraNet
Fig.6 Comparison of frame extrapolation result of Medieval Docks (row 1,2) and Redwood Forest (row 3,4)
方法场景PSNR/dBSSIMPT/(dB·ms?1)
ExtraNetMD28.180.88010.9866
RF23.500.82920.8228
本文方法MD26.950.82992.5046
RF21.210.73571.9711
本文方法(Fast)MD25.700.79724.0031
RF20.340.67963.1682
Tab.2 Comparison of quantitive indicator result of different scene
模型PSNR/dBSSIM
原始模型26.950.829 9
w/o光流重投影模块25.350.810 1
w/o SE模块24.110.803 5
Tab.3 Experimental indicator result before and after module replacement
策略PSNR/dBSSIM
原始模型结果26.950.8299
不删减G-buffers27.310.8341
只保留depth25.100.7935
不使用G-buffers23.990.7701
Tab.4 Experimental indicator result of different G-buffers selection strategy
Fig.7 G-buffers importance experiment result
Fig.8 Result of optical flow reprojection module ablation experiment
Fig.9 Result of SE module ablation experiment
[1]   SANDY M, ANDERSSON J, BARRÉ-BRISEBOIS C. Directx: evolving microsoft’s graphics platform [C]// Game Developers Conference . San Francisco: IEEE, 2018.
[2]   BURGESS J RTX on the NVIDIA Turing GPU[J]. IEEE Micro, 2020, 40 (2): 36- 44
doi: 10.1109/MM.2020.2971677
[3]   HARADA T. Hardware-accelerated ray tracing in AMD Radeon ProRender 2.0 [EB/OL]. [2024-06-20]. https://gpuopen.com/learn/radeon-prorender-2-0/.
[4]   GUO J, FU X, LIN L, et al. ExtraNet: real-time extrapolated rendering for low-latency temporal supersampling [J]. ACM Transactions on Graphics , 2021, 40(6): 1-16.
[5]   BAO W, LAI W S, MA C, et al. Depth-aware video frame interpolation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Los Angeles: IEEE, 2019.
[6]   LEE H, KIM T, CHUNG T Y, et al. AdaCoF: adaptive collaboration of flows for video frame interpolation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020.
[7]   NIKLAUS S, MAI L, LIU F. Video frame interpolation via adaptive convolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Hawaii: IEEE, 2017.
[8]   OCULUS V. Asynchronous spacewarp [EB/OL]. [2024-06-20]. https://developers.meta.com/horizon/blog/asynchronous-spacewarp/.
[9]   MEYER S, WANG O, ZIMMER H, et al. Phase-based frame interpolation for video [C]// IEEE Conference on Computer Vision and Pattern Recognition .Washington DC: IEEE, 2015: 1410-1418.
[10]   MEYER S, DJELOUAH A, MCWILLIAMS B, et al. PhaseNet for video frame interpolation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Los Alamitos: IEEE, 2018: 498-507.
[11]   JIANG H, SUN D, JAMPANI V, et al. Super SloMo: high quality estimation of multiple intermediate frames for video interpolation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Los Alamitos: IEEE, 2018.
[12]   LONG G, KNEIP L, ALVAREZ J M, et al. Learning image matching by simply watching video [C]//LEIBE B, MATAS J, SEBE N, et al. European Conference on Computer Vision . Cham: Springer, 2016: 434-450.
[13]   CHOI M, KIM H, HAN B, et al. Channel attention is all you need for video frame interpolation [C]// AAAI Conference on Artificial Intelligence . New York: AAAI, 2020.
[14]   KALLURI T, PATHAK D, CHANDRAKER M, et al. FLAVR: flow-agnostic video representations for fast frame interpolation [C]// IEEE Workshop/Winter Conference on Applications of Computer Vision . [S. l.]: IEEE, 2020.
[15]   LU L, WU R, LIN H, et al. Video frame interpolation with Transformer [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 3532-3542.
[16]   REDA F, KONTKANEN J, TABELLION E, et al. FILM: frame interpolation for large motion [C]// European Conference on Computer Vision . Tel Aviv: Springer, 2022.
[17]   DIDYK P, EISEMANN E, RITSCHEL T, et al Perceptually-motivated real-time temporal upsampling of 3D content for high-refresh-rate displays[J]. Computer Graphics Forum, 2010, 29 (2): 713- 722
doi: 10.1111/j.1467-8659.2009.01641.x
[18]   DIDYK P, RITSCHEL T, EISEMANN E, et al. Adaptive image-space stereo view synthesis [C]// Proceedings of Vision, Modeling, and Visualization Workshop 2010 . Siegen: [s. n.], 2010.
[19]   YANG L, TSE Y C, SANDER P V, et al. Image-based bidirectional scene reprojection [C]// Proceedings of the 2011 SIGGRAPH Asia Conference . Hongkong: ACM, 2011: 1-10.
[20]   BOWLES H, MITCHELL K, SUMNER R, et al. Iterative image warping [C]// Computer Graphics Forum. Oxford: Blackwell Publishing Ltd, 2012: 237-246.
[21]   NTAVELIS E, ROMERO A, BIGDELI S, et al. AIM 2020 challenge on image extreme inpainting [EB/OL]. [2024-06-20]. http://arxiv.org/abs/2010.01110.
[22]   PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1604.07379.
[23]   ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1904.07475.
[24]   LIU G, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1804.07723.
[25]   YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1806.03589.
[26]   YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1511.07122.
[27]   REN Y, YU X, ZHANG R, et al. StructureFlow: image inpainting via structure-aware appearance flow [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1908.03852.
[28]   LIU H, WANG Y, WANG M, et al. Delving globally into texture and structure for image inpainting [C]// Proceedings of the 30th ACM International Conference on Multimedia . [S. l. ]: ACM, 2022.
[29]   PIRNAY J, CHAI K. Inpainting Transformer for anomaly detection [EB/OL]. [2024-06-20]. https://arxiv.org/abs/2104.13897.
[30]   LUGMAYR A, DANELLJAN M, ROMERO A, et al. RePaint: inpainting using denoising diffusion probabilistic models [EB/OL]. [2024-06-20]. https://arxiv.org/abs/2201.09865.
[31]   HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [[EB/OL]. [2024-06-20]. https://arxiv.org/abs/2006.11239.
[32]   GUO J, LAI S, TAO C, et al. Highlight-aware two-stream network for single image SVBRDF acquisition [J]. ACM Transactions on Graphics , 2021, 40(4): 1-14.
[33]   ZENG Z, LIU S, YANG J, et al Temporally reliable motion vectors for real-time ray tracing[J]. Computer Graphics Forum, 2021, 40 (2): 79- 90
doi: 10.1111/cgf.142616
[34]   HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Los Alamitos: IEEE, 2018: 7132-7141.
[35]   PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library [C]//WALLACH H M, LAROCHELLE H, BEYGELZIMER A, et al. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: MIT Press, 2019: 8024-8035.
[36]   KINGMA D P, BA J. Adam: a method for stochastic optimization [C]// BENGIO Y, LECUN Y. 3rd International Conference on Learning Representations. San Diego: MIT Press, 2015.
[37]   SCHIED C, KAPLANYAN A, WYMAN C, et al. Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination [C]// Proceedings of High Performance Graphics .[S. l.]: ACM, 2017 .
[1] Shancheng TANG,Jianhui LU,Ying ZHANG,Zicheng JIN,Anxin ZHAO. Unsupervised surface defect detection of magnetic tile for repair of suspected area defects[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 718-728.