Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 750-758    DOI: 10.3785/j.issn.1008-973X.2025.04.010
    
Strengthening range of super down-hole dynamic consolidation technology in collapsible loess foundation
Zhengzhen WANG1(),Lei HUANG1,Guoliang DAI2,Yong ZHOU1,3,Tiantao SU1,4,*()
1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Civil Engineering, Southeast University, Nanjing 211189, China
3. School of Civil Engineering, Hexi University, Zhangye 734000, China
4. School of Civil Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
Download: HTML     PDF(1957KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The plane strain problem of cylindrical hole expansion was solved based on the Mohr-Coulomb yield criterion, and the calculation formulas of effective reinforcement zone radius and final reaming pressure of super down-hole dynamic consolidation (SDDC) pile were derived. The theoretical solution correctness of the soil radial displacement around the pile was verified by field tests, and the influence of initial pore diameter and pile diameter on the soil squeezing effect was discussed. Results showed that the effective reinforcement zone radius of the SDDC pile in a collapsible loss foundation reaches more than 2 times the designed pile diameter. Both the radial stress and displacement of soil around the pile decrease logarithmically with the increase of the radial distance. The radial stress tends to the initial stress of the soil, and the radial displacement tends to 0. The attenuation amplitude of the stress field and displacement field is inversely proportional to the initial pore diameter and proportional to the pile diameter. The horizontal displacement of soil around the SDDC pile based on the cylindrical hole expansion theory under plane strain conditions is in good agreement with the measured values in the field, and the reinforcement range of SDDC pile can be calculated by using the theory.



Key wordscollapsible loess      foundation treatment      super down-hole dynamic consolidation (SDDC)      cavity expansion theory      reinforcement range     
Received: 14 February 2024      Published: 25 April 2025
CLC:  TU 472.3+2  
Fund:  国家自然科学基金资助项目(52068048);甘肃省青年科技基金计划资助项目(22JR5RA286);甘肃省住房和城乡建设厅建设科技项目(JK2023-08);兰州理工大学红柳优秀青年人才支持计划.
Corresponding Authors: Tiantao SU     E-mail: wangzz@lut.edu.cn;sutt5008@163.com
Cite this article:

Zhengzhen WANG,Lei HUANG,Guoliang DAI,Yong ZHOU,Tiantao SU. Strengthening range of super down-hole dynamic consolidation technology in collapsible loess foundation. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 750-758.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.010     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/750


湿陷性黄土地基孔内深层超强夯技术的加固范围

基于Mohr-Coulomb屈服准则求解圆柱形孔扩张的平面应变问题,推导孔内深层超强夯(SDDC)桩有效加固区半径和最终扩孔压力的计算公式. 通过现场试验验证桩周土体径向位移理论解的正确性,探讨初始孔径与成桩直径对挤土效应的影响. 结果表明:湿陷性黄土地基中SDDC桩的有效加固区半径超过设计桩径的2倍;桩周土体的径向应力和位移均随着径向距离的增大呈对数衰减,径向应力趋于土体的初始应力,径向位移趋于0;应力场和位移场的衰减幅度与初始孔径成反比,与成桩直径成正比. 基于平面应变条件下圆柱形孔扩张理论得到的SDDC桩桩周土体水平位移与现场实测值吻合度较高,可以利用该理论计算SDDC桩的有效加固范围.


关键词: 湿陷性黄土,  地基处理,  孔内深层超强夯(SDDC),  圆孔扩张理论,  加固范围 
Fig.1 Calculation model of cavity expansion theory
Fig.2 Test piles and deep horizontal displacement holes layout
参数
数值
h=0~13 mh=13~20 m
密度ρ/(kg·m?31 4401 620
泊松比ν0.420.43
黏聚力c/kPa15.715.7
内摩擦角φ/(°)25.925.9
弹性模量E/MPa10.012.0
Tab.1 Physical and mechanical indexes of soil
Fig.3 Photos of field deep horizontal displacement test
Fig.4 Variation of radial stress and radial displacement with radial distance
Fig.5 Development of deep horizontal displacements of measurement holes
Fig.6 Tapered rammer
Fig.7 Diagram of stress diffusion effect
测孔编号r/mur,c/mmuh,f/mm
S13.07.037.31
S26.03.523.03
S39.02.341.75
Tab.2 Calculated and measured soil displacements
Ri/mRp/mpu/kPa
1.04.1498.88
1.13.7891.95
1.23.3583.17
1.32.8171.46
1.42.0853.99
Tab.3 Influence of different pore diameters on reinforcement range of super down-hole dynamic consolidation (Ru=1.5 m)
Fig.8 Distribution of stress field and displacement field with different pore diameters (Ru=1.5 m)
Ru/mRp/mpu/kPa
1.31.9257.31
1.42.7173.39
1.53.3583.17
1.63.9389.95
1.74.4694.99
Tab.4 Influence of different pile diameters on reinforcement range of super down-hole dynamic consolidation (Ri=1.2 m)
Fig.9 Distribution of stress field and displacement field with different pile diameters (Ri=1.2 m)
[1]   谢定义 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23 (1): 3- 13
XIE Dingyi Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (1): 3- 13
doi: 10.3321/j.issn:1000-4548.2001.01.002
[2]   LIU Z, LIU F, MA F, et al Collapsibility, composition, and microstructure of loess in China[J]. Canadian Geotechnical Journal, 2016, 53 (4): 673- 686
doi: 10.1139/cgj-2015-0285
[3]   孟祥连, 夏万云, 周福军, 等 银西高铁董志塬地区黄土工程特性分析研究[J]. 铁道工程学报, 2016, 33 (12): 24- 28
MENG Xianglian, XIA Wanyun, ZHOU Fujun, et al Analysis and study of loess engineering characteristics of Dongzhiyuan on Xi’an-Yinchuan high-speed railway[J]. Journal of Railway Engineering Society, 2016, 33 (12): 24- 28
doi: 10.3969/j.issn.1006-2106.2016.12.006
[4]   黄雪峰, 陈正汉, 方祥位, 等 大厚度自重湿陷性黄土地基处理厚度与处理方法研究[J]. 岩石力学与工程学报, 2007, 26 (Suppl.2): 4332- 4338
HUANG Xuefeng, CHEN Zhenghan, FANG Xiangwei, et al Study on foundation treatment thickness and treatment method for collapse loess with large thickness[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (Suppl.2): 4332- 4338
[5]   冯志焱, 林在贯, 郑翔 孔内深层强夯法处理湿陷性黄土地基的一个实例[J]. 岩土力学, 2005, 26 (11): 1834- 1836
FENG Zhiyan, LIN Zaiguan, ZHENG Xiang An example of treating collapsible loess by super down hole deep compaction[J]. Rock and Soil Mechanics, 2005, 26 (11): 1834- 1836
doi: 10.3969/j.issn.1000-7598.2005.11.034
[6]   黄雪峰, 张广平, 姚志华, 等 大厚度自重湿陷性黄土湿陷变形特性水分入渗规律及地基处理方法研究[J]. 岩土力学, 2011, 32 (Suppl.2): 100- 108
HUANG Xuefeng, ZHANG Guangping, YAO Zhihua, et al Research on deformation, permeability regularity and foundation treatment method of dead-weight collapse loess with heavy section[J]. Rock and Soil Mechanics, 2011, 32 (Suppl.2): 100- 108
[7]   王小军, 屈耀辉, 魏永梁, 等 郑西客运专线湿陷性黄土区试验路堤的沉降观测与预测研究[J]. 岩土力学, 2010, 31 (Suppl.1): 220- 231
WANG Xiaojun, QU Yaohui, WEI Yongliang, et al Settlement observation and prediction research of test embankment in collapsible loess area along Zhengzhou-Xi’an passenger dedicated line[J]. Rock and Soil Mechanics, 2010, 31 (Suppl.1): 220- 231
doi: 10.3969/j.issn.1000-7598.2010.z1.036
[8]   王小军, 王文笛, 李明, 等 Ⅳ级自重湿陷性黄土区客运专线铁路路堤处理地基的现场试验研究[J]. 岩土力学, 2013, 34 (Suppl.2): 318- 324
WANG Xiaojun, WANG Wendi, LI Ming, et al Field test research on treatment effect of embankment foundation in class Ⅳ dead-weight collapsible loess zone along railway passenger dedicated line[J]. Rock and Soil Mechanics, 2013, 34 (Suppl.2): 318- 324
[9]   杨校辉, 黄雪峰, 朱彦鹏, 等 大厚度自重湿陷性黄土地基处理深度和湿陷性评价试验研究[J]. 岩石力学与工程学报, 2014, 33 (5): 1063- 1074
YANG Xiaohui, HUANG Xuefeng, ZHU Yanpeng, et al Experimental study on collapsibility evaluation and treatment depths of collapsible loess upon self weight with thick depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (5): 1063- 1074
[10]   LIU Z R, SUN Q J, YAN Z F. The analysis on bearing characteristic of residue pile composite foundation formed by DDC [J]. Applied Mechanics and Materials , 2014, 580/581/582/583: 302–307.
[11]   孔洋, 阮怀宁, 黄雪峰 DDC法复合黄土地基的原位浸水试验研究[J]. 土木工程学报, 2017, 50 (11): 125- 132
KONG Yang, RUAN Huaining, HUANG Xuefeng In-situ soaking test on composite loess foundation with down-hole dynamic compaction (DDC)[J]. China Civil Engineering Journal, 2017, 50 (11): 125- 132
[12]   XUE T, GAO S The research on treating collapsible loess by down whole deep compaction and cement fly-ash gravel[J]. Frontiers Research of Architecture and Engineering, 2019, 2 (1): 8
doi: 10.30564/frae.v2i1.485
[13]   VESIĆ A S Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98 (3): 265- 290
doi: 10.1061/JSFEAQ.0001740
[14]   YU H S, HOULSBY G T Finite cavity expansion in dilatant soils: loading analysis[J]. Géotechnique, 1991, 41 (2): 173- 183
[15]   YU H S, CARTER J P Rigorous similarity solutions for cavity expansion in cohesive-frictional soils[J]. International Journal of Geomechanics, 2002, 2 (2): 233- 258
doi: 10.1061/(ASCE)1532-3641(2002)2:2(233)
[16]   邹金锋, 彭建国, 张进华, 等 基于非线性Mohr-Coulomb强度准则下的扩孔问题解析[J]. 土木工程学报, 2009, 42 (7): 90- 97
ZOU Jinfeng, PENG Jianguo, ZHANG Jinhua, et al Analytical solution of cavity expansion with the non-linear Mohr-Coulomb failure rule[J]. China Civil Engineering Journal, 2009, 42 (7): 90- 97
doi: 10.3321/j.issn:1000-131X.2009.07.014
[17]   罗嗣海, 侯龙清, 胡中雄, 等 预钻孔孔径对部分挤土桩挤土效应的影响研究[J]. 岩土力学, 2002, 23 (2): 222- 224
LUO Sihai, HOU Longqing, HU Zhongxiong, et al Study on the influence of the diameter of pre-driven borehole on soil-displacement effect of partly soil-displaced piles[J]. Rock and Soil Mechanics, 2002, 23 (2): 222- 224
doi: 10.3969/j.issn.1000-7598.2002.02.018
[18]   胡伟, 刘明振 非饱和土中球形孔扩张的弹塑性分析[J]. 岩土工程学报, 2006, 28 (10): 1292- 1297
HU Wei, LIU Mingzhen Elastic-plastic solution of expansion of sphere cavity in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (10): 1292- 1297
doi: 10.3321/j.issn:1000-4548.2006.10.022
[19]   胡伟, 黄义, 刘增荣 非饱和土中考虑沉桩扩孔速度影响的半球形孔扩张弹塑性分析[J]. 岩石力学与工程学报, 2007, 26 (Suppl.2): 4339- 4342
HU Wei, HUANG Yi, LIU Zengrong Elastoplastic analysis of expansion of hemisphere cavity in unsaturated soil considering pile driving velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (Suppl.2): 4339- 4342
[20]   韩同春, 豆红强 柱孔扩张理论的空间轴对称解在沉桩挤土效应中的应用[J]. 岩石力学与工程学报, 2012, 31 (Suppl.1): 3209- 3215
HAN Tongchun, DOU Hongqiang Application of space axisymmetric solutions of cavity expansion to soil squeezing of pile driving[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl.1): 3209- 3215
doi: 10.3969/j.issn.1000-6915.2012.z1.083
[21]   贾尚华, 赵春风, 赵程 砂土中柱孔扩张问题的扩孔压力与扩孔半径分析[J]. 岩石力学与工程学报, 2015, 34 (1): 182- 188
JIA Shanghua, ZHAO Chunfeng, ZHAO Cheng Analysis of expanded radius and internal expanding pressure of cylindrical hole[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (1): 182- 188
[22]   沈才华, 王媛, 李鹤文, 等 基于扩孔理论的挤密砂桩复合地基桩土应力比计算方法[J]. 岩土力学, 2017, 38 (10): 2873- 2880
SHEN Caihua, WANG Yuan, LI Hewen, et al Determination of pile-soil stress ratio for compaction foundation using cavity expansion theory[J]. Rock and Soil Mechanics, 2017, 38 (10): 2873- 2880
[23]   BISHOP A W The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106 (39): 859- 863
[24]   YANG H, RUSSELL A R Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions[J]. International Journal for Numberical and Analytical Methods in Geomechanics, 2015, 39: 1975- 2016
doi: 10.1002/nag.2379
[25]   鹿群, 龚晓南, 崔武文, 等 饱和成层地基中静压单桩挤土效应的有限元模拟[J]. 岩土力学, 2008, 29 (11): 3017- 3020
LU Qun, GONG Xiaonan, CUI Wuwen, et al Squeezing effects of jacked pile in layered soil[J]. Rock and Soil Mechanics, 2008, 29 (11): 3017- 3020
doi: 10.3969/j.issn.1000-7598.2008.11.022
[26]   魏丽敏, 杜猛, 何群, 等 基于高精度全自动监测系统的静压群桩现场试验[J]. 岩石力学与工程学报, 2020, 39 (Suppl.2): 3627- 3635
WEI Limin, DU Meng, HE Qun, et al Field test of static pressure pile group based on high precision automatic monitoring system[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (Suppl.2): 3627- 3635
[1] ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, LI Jin-zhu, LIU Yi-min. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1064-1073.