|
|
Offline small data-driven evolutionary algorithm based on multi-kernel data synthesis |
Erchao LI( ),Yun LIU |
College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract An offline data-driven evolutionary algorithm based on multi-kernel data synthesis (DDEA-MKDS) was proposed to enhance the performance of such algorithms in small data scenarios and weaken the dependence of surrogate model on data set size. The empirical formula and traversal method were used to calculate the optimal number of hidden layer nodes for the offline data set in order to simplify model structure by considering that the surrogate model is prone to overfitting due to small data. Three radial basis networks with different kernel functions were trained to generate synthetic data in order to make up for the lack of data. A part of synthetic data was selected by roulette to combine with original data, and new data set was used to train the surrogate model. The experimental results showed that DDEA-MKDS had good performance under the condition of small data by comparing with five states of the art offline data-driven evolutionary algorithms on six single objective benchmark problems, and its efficiency was significantly better than other algorithms.
|
Received: 13 December 2023
Published: 11 February 2025
|
|
Fund: 国家自然科学基金资助项目(62063019);甘肃省自然科学基金资助项目(24JRRA173,22JR5RA241). |
基于多核数据合成的离线小数据驱动的进化算法
为了增强离线数据驱动的进化算法在小数据情景中的表现, 削弱代理模型对数据集规模的依赖, 提出基于多核数据合成的离线小数据驱动的进化算法(DDEA-MKDS). 考虑到代理模型易因小数据陷入过拟合, 通过经验公式与遍历法找出针对离线数据集的最优隐含层节点数,以简化模型结构. 为了弥补数据量的不足, 训练了3个不同核函数的径向基网络生成合成数据, 通过轮盘赌法选择其中的部分数据与原数据集合并, 使用新数据集训练代理模型. 将DDEA-MKDS与其他5种流行的离线数据驱动的进化算法在6个单目标基准测试问题上进行对比, 实验结果表明, 所提算法在数据量极小的条件下能够取得良好的效果, 寻优效率显著优于其他算法.
关键词:
离线数据驱动,
进化算法,
小数据,
代理模型,
隐含层节点,
合成数据
|
|
[1] |
JIN Y, WANG H, CHUGH T, et al Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (3): 442- 458
doi: 10.1109/TEVC.2018.2869001
|
|
|
[2] |
CHEN R, HE C, JIN Y, et al Model-based evolutionary algorithms: a short survey[J]. Complex and Intelligent Systems, 2018, 4 (4): 283- 292
doi: 10.1007/s40747-018-0080-1
|
|
|
[3] |
HE C, TIAN Y, WANG H, et al A repository of real-world datasets for data-driven evolutionary multiobjective optimization[J]. Complex and Intelligent Systems, 2020, 6 (1): 189- 197
doi: 10.1007/s40747-019-00126-2
|
|
|
[4] |
WANG H, JIN Y, JANSEN J O Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (6): 939- 952
doi: 10.1109/TEVC.2016.2555315
|
|
|
[5] |
GUO D, CHAI T, DING J, et al. Small data driven evolutionary multi-objective optimization of fused magnesium furnaces [C]// IEEE Symposium Series on Computational Intelligence . Athens: IEEE, 2016: 1-8.
|
|
|
[6] |
黄鹏飞. 离线数据驱动的进化优化研究[D]. 西安: 西安电子科技大学, 2021: 15-18, 46-47. HUANG Pengfei. A study on offline data-driven evolutionary optimization [D]. Xi’an: Xidian University, 2021: 15-18, 46-47.
|
|
|
[7] |
HUANG P, WANG H, MA W. Stochastic ranking for offline data-driven evolutionary optimization using radial basis function networks with multiple kernels [C]// IEEE Symposium Series on Computational Intelligence . Xiamen: IEEE, 2019: 2050-2057.
|
|
|
[8] |
CHENG R, JIN Y, NARUKAWA K, et al A multiobjective evolutionary algorithm using gaussian process-based inverse modeling[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (6): 838- 856
doi: 10.1109/TEVC.2015.2395073
|
|
|
[9] |
梁正平, 黄锡均, 李燊钿, 等 基于剪枝堆栈泛化的离线数据驱动进化优化[J]. 自动化学报, 2023, 49 (6): 1306- 1325 LIANG Zhengping, HUANG Xijun, LI Shentian, et al Offline data driven evolutionary optimization based on pruning stacked generalization[J]. Acta Automatica Sinica, 2023, 49 (6): 1306- 1325
|
|
|
[10] |
ZHOU Z, ONG Y S, NGUYEN M H, et al. A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm [C]// IEEE Congress on Evolutionary Computation . Edinburgh: IEEE, 2005: 2832-2839.
|
|
|
[11] |
HUANG P, WANG H, JIN Y Offline data-driven evolutionary optimization based on tri-training[J]. Swarm and Evolutionary Computation, 2021, 60: 100800
doi: 10.1016/j.swevo.2020.100800
|
|
|
[12] |
CHUGH T, CHAKRABORTI N, SINDHYA K, et al A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem[J]. Materials and Manufacturing Processes, 2017, 32 (10): 1172- 1178
doi: 10.1080/10426914.2016.1269923
|
|
|
[13] |
LI J, ZHAN Z, ZHANG J Evolutionary computation for expensive optimization: a survey[J]. Machine Intelligence Research, 2022, 19 (1): 3- 23
doi: 10.1007/s11633-022-1317-4
|
|
|
[14] |
CHUGH T, JIN Y, MIETTINEN K, et al A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 22 (1): 129- 142
|
|
|
[15] |
LIM D, ONG Y S, JIN Y, et al. A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation [C]// Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation . London: ACM, 2007: 1288-1295.
|
|
|
[16] |
MEY A, LOOG M Improved generalization in semi-supervised learning: a survey of theoretical results[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (4): 4747- 4767
doi: 10.1109/TPAMI.2022.3198175
|
|
|
[17] |
GÖNEN M, ALPAYDIN E Multiple kernel learning algorithms[J]. The Journal of Machine Learning Research, 2011, 12 (7): 2211- 2268
|
|
|
[18] |
MA X, LI X, ZHANG Q, et al A survey on cooperative co-evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (3): 421- 441
doi: 10.1109/TEVC.2018.2868770
|
|
|
[19] |
WANG H, JIN Y, SUN C, et al Offline data-driven evolutionary optimization using selective surrogate ensembles[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (2): 203- 216
|
|
|
[20] |
ZHOU Z, LI M Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (11): 1529- 1541
doi: 10.1109/TKDE.2005.186
|
|
|
[21] |
GOSAIN A, SACHDEVA K Materialized view selection for query performance enhancement using stochastic ranking based cuckoo search algorithm[J]. International Journal of Reliability, Quality and Safety Engineering, 2020, 27 (3): 2050008
doi: 10.1142/S0218539320500084
|
|
|
[22] |
GONG Y, ZHONG Y, HUANG H. Offline data-driven optimization at scale: a cooperative coevolutionary approach [EB/OL]. (2023-12-04)[2024-01-30]. https://doi.org/10.1109/TEVC.2023.3338693.
|
|
|
[23] |
HUANG H, GONG Y Contrastive learning: an alternative surrogate for offline data-driven evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2023, 27 (2): 370- 384
doi: 10.1109/TEVC.2022.3170638
|
|
|
[24] |
WANG R, ZHU F, ZHANG X, et al Training with scaled logits to alleviate class-level over-fitting in few-shot learning[J]. Neurocomputing, 2023, 522: 142- 151
doi: 10.1016/j.neucom.2022.12.011
|
|
|
[25] |
ROHLOFF C T, KOHLI N, CHUNG S The impact of functional form complexity on model overfitting for nonlinear mixed-effects models[J]. Multivariate Behavioral Research, 2023, 58 (4): 723- 742
doi: 10.1080/00273171.2022.2119360
|
|
|
[26] |
RASTEGAR R, HARIRI A A step forward in studying the compact genetic algorithm[J]. Evolutionary Computation, 2006, 14 (3): 277- 289
doi: 10.1162/evco.2006.14.3.277
|
|
|
[27] |
王嵘冰, 徐红艳, 李波, 等 BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28 (4): 31- 35 WANG Rongbing, XU Hongyan, LI Bo, et al Research on method of determining hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28 (4): 31- 35
doi: 10.3969/j.issn.1673-629X.2018.04.007
|
|
|
[28] |
MAO Y, LIU C, XIAO D, et al Study of the magnetic properties of haematite based on spectroscopy and the IPSO-ELM neural network[J]. Journal of Sensors, 2018, 2018 (1): 1- 9
|
|
|
[29] |
MIN M, CHEN X, LEI Y, et al A novel kernel-based extreme learning machine with incremental hidden layer nodes[J]. IFAC PapersOnLine, 2020, 53 (2): 11836- 11841
doi: 10.1016/j.ifacol.2020.12.695
|
|
|
[30] |
TAO L, CAO T, WANG Q, et al Distribution adaptation and classification framework based on multiple kernel learning for motor imagery BCI illiteracy[J]. Sensors, 2022, 22 (17): 6572
doi: 10.3390/s22176572
|
|
|
[31] |
PRICE S R, ANDERSEN D T, HAVENS T C, et al Kernel matrix-based heuristic multiple kernel learning[J]. Mathematics, 2022, 10 (12): 2026
doi: 10.3390/math10122026
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|