1. College of Transportation, Jilin University, Changchun 130022, China 2. School of Traffic and Transportation, Changsha University of Science and Technology, Changsha 410114, China
A multi-lane cellular automata model was established to study the influence of long-distance interweaving zones on traffic flow in urban expressways. Considering the lane-changing behavior and the intensity of lane-changing needs of vehicles at different positions within the long-distance weaving section, three distinct lane-changing rules were introduced and the long-distance weaving area was segmented accordingly. Cellular models under different traffic management strategies were constructed, considering factors such as dynamic safety distances and traffic flow management. Simulation revealed that mandatory lane-changing behavior within long-distance weaving sections easily led to localized congestion, forming bottlenecks at entrances and exits. Although the double dashed-line strategy provided more opportunities for lane-changing vehicles to exit, this advantage gradually diminished with an increasing occupancy rate. In comparison, the dashed-solid line strategy appeared more reasonable. The dashed-solid line strategy with a main road priority, while maintaining the right of way for vehicles exiting from the main road, inevitably sacrificed some efficiency in the movement of vehicles on the secondary road. However, considering the intermittent traffic flow characteristics of the secondary road, the solid-dashed line strategy 1 (the main road exits first, then followed by the secondary road) still held certain practical value.
Yongheng CHEN,Suicheng YANG,Shihao LI,Shiyu KOU. Operation simulation of urban expressway long-distance interweaving zones based on cellular automata. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2575-2585.
Fig.1Schematic diagram of entrance and exit of typical expressway
Fig.2Schematic diagram of long-distance weaving zones on expressway
Fig.3Schematic diagram of management strategies for long-distance weaving zones on urban expressway
Fig.4Schematic diagram of model scenario division
Fig.5Schematic diagram of application of lane change rule
Fig.6Real scene image of research subject
参数
定义
数值
单位
参数
定义
数值
单位
$ l_{{\rm{lv}}} $
大型车辆所占元胞长度
3
$ {\rm{cell}} $
$\Delta t$
时间步长
1
${\rm{s}}$
$ l_{\rm{sv}} $
小型车辆所占元胞长度
1
${\rm{ cell}} $
$ a_{\rm{1}} $
舒适加速度
1
$ {\rm{cell}}/{{\rm{s}}^2} $
$ P_{\rm{outm}} $
快速路驶出车辆比例
0.4
—
$ a_2 $
舒适减速度
1
$ {\rm{cell}}/{{\rm{s}}^2} $
$P_{\rm{outs}}$
辅路驶出车辆比例
0.5
—
$ v_{\rm{s}} $
最小速度
略大于0
$ {\rm{cell}}/{\rm{s}} $
$P_{\rm{lvm}}$
快速路大型车辆比例
0
—
$ p_{\rm{s}} $
减速概率参数
0.1
—
$P_{\rm{lvs}}$
辅路大型车辆比例
0.15
—
$ p_{\rm{d}} $
线性插值最大值
1
—
$ v_{\max 1} $
快速路最大行驶速度
5
$ {\rm{cell}}/{\rm{s}} $
$ p_0 $
线性插值最小值
0.8
—
$ v_{\max 2} $
辅路最大行驶速度
3
$ {\rm{cell/s}} $
—
—
—
—
Tab.1Key parameters of simulation
Fig.7Illustration of relationship between changeover frequency and occupancy rate
Fig.8Illustration of relationship between average flow rate and occupancy rate
Fig.9Comparison of primary and secondary road flows under different lane allocation strategies
Fig.10Illustration of relationship between average speed and occupancy rate
车道
双虚线型策略
虚实线策略1
虚实线策略2
车道1
车道2
车道3
车道4
车道5
车道6
Tab.2Spatiotemporal trajectory diagrams for different lane management strategies
[1]
TREIBER M, KESTING A. Traffic flow dynamics [M]// KESTING A, TREIBER M. Traffic flow dynamics: data, models and simulation . Berlin Heidelberg: Springer-Verlag, 2013: 983–1000.
[2]
NAGATANI T Modified KdV equation for jamming transition in the continuum models of traffic[J]. Physica A: Statistical Mechanics and its Applications, 1998, 261 (3/4): 599- 607
[3]
NAGATANI T Jamming transitions and the modified Korteweg-devries equation in a two-lane traffic flow[J]. Physica A: Statistical Mechanics and its Applications, 1999, 265 (1/2): 297- 310
[4]
叶颖俊, 孙剑 快速路汇入区瓶颈交通流早发性失效研究(第1部分): 建模仿真[J]. 中国公路学报, 2023, 36 (8): 240- 256 YE Yingjun, SUN Jian Early-onset breakdown of bottleneck traffic at expressway merging area, part Ⅰ: modeling and simulation[J]. China Journal of Highway and Transport, 2023, 36 (8): 240- 256
[5]
叶颖俊, 孙剑 快速路汇入区瓶颈交通流早发性失效研究(第2部分): 致因分析[J]. 中国公路学报, 2024, 37 (2): 275- 292 YE Yingjun, SUN Jian Early-onset breakdown of bottleneck traffic at expressway merging area, part Ⅰ: causation analysis[J]. China Journal of Highway and Transport, 2024, 37 (2): 275- 292
[6]
吴中, 梁明琰, 杨海飞 基于换道时间分布的交通流随机微分方程[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1629- 1635 WU Zhong, LIANG Mingyan, YANG Haifei Stochastic differential equation of traffic flow model based on distribution of lane-changing duration[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1629- 1635
[7]
BANDO M, HASEBE K, NAKAYAMA A, et al Dynamical model of traffic congestion and numeri cal simulation[J]. Physical Review E, 1995, 51 (2): 1035
doi: 10.1103/PhysRevE.51.1035
[8]
BERG P, WOODS A On-ramp simulations and solitary waves of a car-following model[J]. Physical Review E, 2001, 64 (3): 035602
doi: 10.1103/PhysRevE.64.035602
[9]
NAGEL K, SCHRECKENBERG M A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2 (12): 2221- 2229
doi: 10.1051/jp2:1992262
[10]
雷丽, 董力耘, 宋涛, 等 基于元胞自动机模型的高架路交织区交通流的研究[J]. 物理学报, 2006, 55 (4): 1711- 1717 LEI Li, DONG Liyun, SONG Tao, et al Study on the traffic flow of weaving section in elevated road system with cellular automaton model[J]. Acta Physica Sinica, 2006, 55 (4): 1711- 1717
doi: 10.3321/j.issn:1000-3290.2006.04.028
[11]
彭博, 王玉婷, 谢济铭, 等 城市干线短交织区元胞自动机多级换道决策模型[J]. 交通运输系统工程与信息, 2020, 20 (4): 41- 48 PENG Bo, WANG Yuting, XIE Jiming, et al Multi-stage lane changing decision model of urban trunk road's short weaving area based on cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 41- 48
[12]
MARCZAK F, LECLERCQ L, BUISSON C A macroscopic model for freeway weaving sections[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30 (6): 464- 477
doi: 10.1111/mice.12119
[13]
谢济铭, 彭博, 秦雅琴 基于换道概率分布的多车道交织区元胞自动机模型[J]. 交通运输系统工程与信息, 2022, 22 (3): 276- 285 XIE Jiming, PENG Bo, QIN Yaqin Cellular automata model of multi-lane weaving area based on lane-changing probability distribution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 276- 285
[14]
陈永恒, 李浩楠, 吴场建, 等 基于元胞自动机的附加导流岛型出口仿真建模[J]. 交通运输系统工程与信息, 2022, 22 (4): 96- 105 CHEN Yongheng, LI Haonan, WU Changjian, et al Simulation modeling of additional channelization island type exit based on cellular automata[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (4): 96- 105