The vehicle-drone cooperative delivery problem was analyzed where a drone could service multiple customers after takeoff in order to fully utilize the respective advantages of drones and vehicles. The considered constraints include regional restrictions for vehicles and delivery range limitations due to the loading and endurance capabilities of the drone. A mathematical model of the problem was established to minimize the total delivery time, and a hybrid shuffled frog leaping algorithm (HSFLA) was proposed to solve it aiming at the multi-drop vehicle-drone cooperative problem with delivery restrictions (MDVCP-DR). A novel encoding and pre-adjusted decoding method was proposed to obtain feasible solutions so that the constraints involved in the problem can be satisfied. Then an individual generation method was developed to update individuals in the population based on four crossover operators and an elite list. An adaptive local search strategy was imbedded into the algorithm in order to enhance the local exploitation ability of HSFLA. A population diversity detection strategy was used to ensure the diversity of individuals in the population. Simulation experiments demonstrated the accuracy of the established mathematical model and the effectiveness of HSFLA.
Tab.1Parameter setting of customer, vehicle and drone
参数
水平
1
2
3
NPOP
48
72
96
Meme
4
8
12
NM
2
4
6
LS
5
10
15
Tab.2Parameter settings of HSFLA
实验号
参数水平
RV
NPOP
Meme
NM
LS
1
1
1
1
1
16.16
2
1
2
2
2
16.18
3
1
3
3
3
16.26
4
2
1
2
3
16.08
5
2
2
3
1
16.53
6
2
3
1
2
16.23
7
3
1
3
2
16.20
8
3
2
1
3
16.28
9
3
3
2
1
16.32
Tab.3Orthogonal table L9(34)
算例
客户规模
Gurobi 10.0
HSFLA
BST
t/s
BST
AVG
t /s
FP11_06
6
8.32
3.41
8.32
8.32
6.00
FP11_07
7
8.41
21.81
8.41
8.41
7.00
FP11_08
8
8.41
213.46
8.44
8.44
8.00
FP11_09
9
8.44
1 311.37
8.44
8.44
9.00
FP11_10
10
8.47*
1 800.00
8.47
8.47
10.00
FP11_11
11
8.53*
1 800.00
8.51
8.56
11.00
FP11_12
12
8.56*
1 800.00
8.52
8.59
12.00
FP11_13
13
8.61*
1 800.00
8.69
8.69
13.00
FP11_14
14
8.72*
1 800.00
8.73
8.74
14.00
FP11_15
15
8.81*
1 800.00
8.69
8.69
15.00
FP11_16
16
8.99*
1 800.00
8.93
8.95
16.00
FP11_17
17
8.94*
1 800.00
8.95
8.96
17.00
FP12
21
9.77*
1 800.00
9.09
9.13
21.00
FP01
33
—
1 800.00
13.05
13.31
33.00
Tab.4Simulation results of Gurobi and HSFLA
算例
客户规模
HSFLA1
HSFLA2
HSFLA3
HSFLA
BST
AVG
BST
AVG
BST
AVG
BST
AVG
FP01
33
13.14
13.56
13.02
13.47
12.91
13.38
13.13
13.36
FP02
46
14.53
15.40
14.38
14.93
13.51
14.17
13.52
13.77
FP03
56
14.51
15.52
14.09
15.08
14.06
14.58
13.89
14.23
FP04
66
15.56
16.89
15.91
16.49
14.84
15.50
14.76
15.39
FP05
81
19.12
20.12
21.90
23.64
18.13
19.13
16.24
17.90
FP06
52
12.76
13.36
13.04
13.46
12.35
12.75
12.36
12.67
FP07
77
15.83
16.60
15.71
16.75
14.21
14.72
14.21
14.59
FP08
102
18.48
19.70
17.38
18.21
15.75
16.23
15.75
16.16
FP09
152
21.93
24.43
22.72
24.14
18.84
20.33
19.36
20.24
FP10
201
28.83
31.81
27.19
28.79
21.81
22.66
21.57
22.44
FP11
17
8.95
8.99
8.95
9.03
8.95
8.97
8.95
8.96
FP12
21
9.18
9.29
9.09
9.34
9.09
9.20
9.09
9.21
Tab.5Simulation result of ablation study
算法
tp/s
NPOP
T0
λ
q
L
SA
n
1
0.01
—
0.90
2 000
ALNS
n
1
0.01
0.9
0.98
1
IPGA
n
100
—
—
—
—
Tab.6Parameter setting of comparison algorithm
算例
原始算例
客户规模
SA
ALNS
IPGA
HSFLA
BST
AVG
BST
AVG
BST
AVG
BST
AVG
FP01
A-n32-k05
33
13.38
13.57
13.33
13.75
15.53
16.36
13.13
13.36
FP02
A-n45-k06
46
13.80
14.69
14.15
14.89
17.80
18.71
13.52
13.77
FP03
A-n55-k09
56
14.13
15.05
13.98
15.29
18.85
20.43
13.89
14.23
FP04
A-n65-k09
66
15.58
16.53
15.04
16.32
20.84
22.04
14.76
15.39
FP05
A-n80-k10
81
19.54
20.89
19.06
20.95
28.90
31.22
16.24
17.90
FP06
CMT01
52
13.04
13.41
13.12
13.42
14.99
15.40
12.36
12.67
FP07
CMT02
77
15.22
16.08
15.65
16.32
19.79
20.27
14.21
14.59
FP08
CMT03
102
17.38
17.86
17.12
17.70
20.94
21.59
15.75
16.16
FP09
CMT04
152
22.85
23.71
21.46
22.76
28.72
29.90
19.36
20.24
FP10
CMT05
201
23.85
24.50
25.86
27.53
33.64
34.70
21.57
22.44
FP11
P-n016-k08
17
8.96
9.04
8.95
9.04
9.27
9.40
8.95
8.96
FP12
P-n020-k02
21
9.16
9.33
9.10
9.41
9.59
9.85
9.09
9.21
Tab.7Simulation result of different algorithm with Lm = 5 kg, Ltime = 0.5 h
实验号
Lm/kg
Ltime/h
AVG
实验号
Lm/kg
Ltime/h
AVG
SA
ALNS
IPGA
HSFLA
SA
ALNS
IPGA
HSFLA
1
5
0.5
17.09
16.78
21.18
16.09
14
7
1.25
15.23
15.18
17.70
14.91
2
5
0.75
16.02
15.94
18.98
15.58
15
7
1.5
15.28
15.32
17.79
14.90
3
5
1
15.93
15.88
18.36
15.28
16
8
0.5
17.24
16.75
20.94
15.74
4
5
1.25
15.73
15.73
18.37
15.28
17
8
0.75
16.12
15.71
18.26
15.09
5
5
1.5
15.90
15.93
18.35
15.09
18
8
1
15.45
15.45
18.05
14.79
6
6
0.5
17.18
16.65
21.43
16.00
19
8
1.25
15.26
15.29
17.90
14.68
7
6
0.75
16.07
15.96
18.66
15.11
20
8
1.5
15.27
15.14
17.62
14.75
8
6
1
15.71
15.55
18.05
15.09
21
9
0.5
17.15
16.68
20.80
15.85
9
6
1.25
15.51
15.61
17.97
14.96
22
9
0.75
16.09
16.01
18.30
15.16
10
6
1.5
15.57
15.48
17.92
15.06
23
9
1
15.36
15.62
18.06
15.01
11
7
0.5
16.83
16.86
21.06
16.17
24
9
1.25
15.29
15.32
17.49
14.78
12
7
0.75
15.88
16.01
18.46
15.21
25
9
1.5
14.98
14.87
17.41
14.67
13
7
1
15.54
15.48
17.99
14.87
—
—
—
—
—
—
—
Tab.8Result of different algorithm on FP08 under different drone parameter
Fig.6Comparison of different algorithm
[1]
MURRAY C C, CHU A G The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 86- 109
doi: 10.1016/j.trc.2015.03.005
[2]
GRIFFITH E F, SCHURER J M, MAWINDO B, et al The use of drones to deliver rift valley fever vaccines in rwanda: perceptions and recommendations[J]. Vaccines, 2023, 11 (3): 605
doi: 10.3390/vaccines11030605
[3]
WEN X P, WU G H Heterogeneous multi-drone routing problem for parcel delivery[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103763
doi: 10.1016/j.trc.2022.103763
[4]
AGATZ N, BOUMAN P, SCHMIDT M Optimization approaches for the traveling salesman problem with drone[J]. Transportation Science, 2018, 52 (4): 965- 981
doi: 10.1287/trsc.2017.0791
[5]
GONZALEZ-R P L, CANCA D, ANDRADE-PINEDA J L, et al Truck-drone team logistics: a heuristic approach to multi-drop route planning[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 657- 680
doi: 10.1016/j.trc.2020.02.030
[6]
柳伍生, 李旺, 周清, 等 “无人机-车辆”配送路径优化模型与算法[J]. 交通运输系统工程与信息, 2021, 21 (6): 176- 186 LIU Wusheng, LI Wang, ZHOU Qing, et al “Drone-Vehicle” distribution routing optimization model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (6): 176- 186
[7]
LUO Z H, POON M, ZHANG Z Z, et al The multi-visit traveling salesman problem with multi-drones[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103172
doi: 10.1016/j.trc.2021.103172
[8]
伍国华, 毛妮, 徐彬杰, 等 基于自适应大规模邻域搜索算法的多车辆与多无人机协同配送方法[J]. 控制与决策, 2023, 38 (1): 201- 210 WU Guohua, MAO Ni, XU Binjie, et al The cooperative delivery of multiple vehicles and multiple drones based on adaptive large neighborhood search[J]. Control and Decision, 2023, 38 (1): 201- 210
[9]
GU R X, POON M, LUO Z H, et al A hierarchical solution evaluation method and a hybrid algorithm for the vehicle routing problem with drones and multiple visits[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103733
doi: 10.1016/j.trc.2022.103733
[10]
MARA S T W, RIFAI A P, SOPHA B M An adaptive large neighborhood search heuristic for the flying sidekick traveling salesman problem with multiple drops[J]. Expert Systems with Applications, 2022, 205: 117647
doi: 10.1016/j.eswa.2022.117647
[11]
杜茂康, 罗娟, 李博文 基于多车场的车载无人机协同配送路径优化[J]. 系统工程, 2021, 39 (6): 90- 98 DU Maokang, LUO Juan, LI Bowen Research on cooperative delivery route optimization of vehicle-carried drones based on multi-depot[J]. Systems Engineering, 2021, 39 (6): 90- 98
[12]
范厚明, 张跃光, 田攀俊 时变路网下多中心电动车-无人机协同配送路径优化[J]. 管理工程学报, 2023, 37 (2): 131- 142 FAN Houming, ZHANG Yueguang, TIAN Panjun Multi-depot electric vehicle routing problem with drones under time-dependent networks[J]. Journal of Industrial Engineering and Engineering Management, 2023, 37 (2): 131- 142
[13]
吴廷映, 陶新月, 孟婷 “卡车+无人机”模式下带时间窗的取送货车辆路径问题[J]. 计算机集成制造系统, 2023, 29 (7): 2440- 2448 WU Tingying, TAO Xinyue, MENG Ting Pickup and delivery problem with time windows in mode of “truck +drone”[J]. Computer Integrated Manufacturing Systems, 2023, 29 (7): 2440- 2448
[14]
DAS D N, SEWANI R, WANG J W, et al Synchronized truck and drone routing in package delivery logistics[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (9): 5772- 5782
[15]
KUO R J, LU S H, LAI P Y, et al Vehicle routing problem with drones considering time windows[J]. Expert Systems with Applications, 2022, 191: 116264
doi: 10.1016/j.eswa.2021.116264
[16]
LUO Q Z, WU G H, JI B, et al Hybrid multi-objective optimization approach with pareto local search for collaborative truck-drone routing problems considering flexible time windows[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (8): 13011- 13025
[17]
彭勇, 黎元钧 考虑疫情影响的卡车无人机协同配送路径优化[J]. 中国公路学报, 2020, 33 (11): 73- 82 PENG Yong, LI Yuanjun Optimization of truck-drone collaborative distribution route considering impact of epidemic[J]. China Journal of Highway and Transport, 2020, 33 (11): 73- 82
[18]
颜瑞, 陈立双, 朱晓宁, 等 考虑区域限制的卡车搭载无人机车辆路径问题研究[J]. 中国管理科学, 2022, 30 (5): 144- 155 YAN Rui, CHEN Lishuang, ZHU Xiaoning, et al Research on vehicle routing problem with truck and drone considering regional restriction[J]. Chinese Journal of Management Science, 2022, 30 (5): 144- 155
[19]
EUSUFF M, LANSEY K, PASHA F Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization[J]. Engineering Optimization, 2006, 38 (2): 129- 154
doi: 10.1080/03052150500384759