Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 1981-1991    DOI: 10.3785/j.issn.1008-973X.2024.10.001
    
Efficient heterogeneous authentication scheme with privacy protection in air-ground collaboration scenario
Xuejiao LIU1(),Xiang ZHAO1,Yingjie XIA2,3,*(),Tiancong CAO1
1. School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
2. Microelectronics Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
3. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1398KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An efficient heterogeneous authentication scheme was proposed, aiming at the problems of low efficiency of heterogeneous authentication, easy leakage of privacy and large computational overhead due to frequent communication between vehicle and UAV in air-ground collaboration scenarios. An efficient heterogeneous authentication protocol based on the Schnorr signature and physical unclonable function was designed to resist security threats such as clone attacks, physical attacks and replay attacks. A vehicle pseudonym generation method based on a fuzzy extractor and identity token was designed to protect users’ privacy, and the identity of malicious vehicles was accurately traced to achieve conditional privacy protection. A handover authentication protocol based on key sharing was designed to reduce the amount of computation in the authentication process, to reduce the energy consumption of the UAV in the authentication process. Experimental results showed that the proposed scheme effectively improved the efficiency of vehicle and UAV authentication, and reduced the computational overhead by 54.8% on average compared with the existing schemes.



Key wordsair-ground collaboration      heterogeneous mutual authentication      key agreement      handover authentication      privacy protection     
Received: 07 November 2023      Published: 27 September 2024
CLC:  TP 393  
Fund:  浙江省“尖兵领雁”科技攻关项目(2024C01179);浙江省自然科学基金资助项目(LZ22F030004);2024年浙江省大学生科技创新活动计划(新苗人才计划)资助项目(2024R426B070);2023年杭州师范大学信息科学与技术学院星光计划资助项目.
Corresponding Authors: Yingjie XIA     E-mail: liuxuejiao0406@163.com;xiayingjie@zju.edu.cn
Cite this article:

Xuejiao LIU,Xiang ZHAO,Yingjie XIA,Tiancong CAO. Efficient heterogeneous authentication scheme with privacy protection in air-ground collaboration scenario. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 1981-1991.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.001     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/1981


空地协同场景下具有隐私保护的高效异构认证方案

在空地协同场景下车辆与无人机频繁通信存在异构认证效率低、隐私容易泄露、计算开销较大等问题,为此提出高效的异构认证方案. 设计基于Schnorr签名和物理不可克隆函数的高效异构认证协议以抵抗克隆攻击、物理攻击和重放攻击等安全威胁;设计基于模糊提取器和身份令牌的车辆假名生成方法,在保护用户隐私的同时准确追溯恶意车辆的身份信息,实现有条件的隐私保护;设计基于密钥共享的切换认证协议,减少认证过程中的计算量,降低认证过程中无人机的能量消耗. 实验结果表明,所提方案有效提高了车辆与无人机认证效率,与现有方案相比,平均降低了54.8%的计算开销.


关键词: 空地协同,  异构相互认证,  密钥协商,  切换认证,  隐私保护 
Fig.1 System model of air-ground collaboration scenario
Fig.2 Efficient heterogeneous authentication scheme flow with privacy protection in air-ground collaboration scenario
Fig.3 Vehicle identity token generation and recovery process
方案异构相互认证会话密钥协商匿名性可追溯性不可链接性抗克隆和物理攻击抗重放攻击抗中间人攻击
文献[17]××
文献[19]××
文献[23]×××
文献[24]×××××
本研究
Tab.1 Security comparison of authentication schemes
ms
符号描述数值
th执行哈希运算0.001
teccm执行椭圆曲线中的标量乘运算2.304
tecca执行椭圆曲线中的点加运算0.015
tsig执行椭圆曲线数字签名算法中签名运算18.647
tver执行椭圆曲线数字签名算法中验证运算20.961
tbp执行双线性配对运算23.795
tbpm执行与双线性配对相关的标量乘运算4.176
tbpa执行与双线性配对相关的点加运算0.020
tbpex执行与双线性配对相关的幂运算10.086
Tab.2 Execution time of cryptographic operation
方案t1t2
车辆无人机总计算无人机
文献[17]$ 2{t}_{{\mathrm{bpm}}}+2{t}_{{\mathrm{h}}}+2{t}_{{\mathrm{bpex}}} $$ 2{t}_{{\mathrm{bp}}}+4{t}_{{\mathrm{h}}}+3{t}_{{\mathrm{bpex}}}+{t}_{{\mathrm{bpm}}}+{t}_{{\mathrm{bpa}}} $$ 2{t}_{{\mathrm{bp}}}+6{t}_{{\mathrm{h}}}+5{t}_{{\mathrm{bpex}}}+3{t}_{{\mathrm{bpm}}}+{t}_{{\mathrm{bpa}}} $$ 2n{t}_{{\mathrm{bp}}}+4{nt}_{{\mathrm{h}}}+3n{t}_{{\mathrm{bpex}}}+n{t}_{{\mathrm{bpm}}} +n{t}_{{\mathrm{bpa}}} $
文献[19]$ 3{t}_{{\mathrm{bpm}}}+2{t}_{{\mathrm{h}}}+{t}_{{\mathrm{bpex}}} $$ 2{t}_{{\mathrm{bp}}}+3{t}_{{\mathrm{h}}}+{t}_{{\mathrm{bpex}}}+{t}_{{\mathrm{bpm}}}+{t}_{{\mathrm{bpa}}} $$ 2{t}_{{\mathrm{bp}}}+3{t}_{{\mathrm{h}}}+{t}_{{\mathrm{bpa}}}+2{t}_{{\mathrm{bpex}}}+3{t}_{{\mathrm{bpm}}} $$ 2n{t}_{{\mathrm{bp}}}+3n{t}_{{\mathrm{h}}}+n{t}_{{\mathrm{bpex}}}+n{t}_{{\mathrm{bpm}}} $
文献[23]$11 {{t}}_{\mathrm{h}}+3{{t}}_{\mathrm{e}\mathrm{c}\mathrm{c}\mathrm{m}} $$ 8{t}_{{\mathrm{h}}}+3{t}_{{\mathrm{eccm}}}+{t}_{{\mathrm{sig}}} $$ 19{t}_{{\mathrm{h}}}+6{t}_{{\mathrm{eccm}}}+{t}_{{\mathrm{sig}}} $$ 8{nt}_{{\mathrm{h}}}+3n{t}_{{\mathrm{eccm}}}+{nt}_{{\mathrm{sig}}} $
文献[24]$ {t}_{{\mathrm{bp}}}+2{t}_{{\mathrm{h}}}+4{t}_{{\mathrm{bpex}}}+{t}_{{\mathrm{bpm}}} $$ {t}_{{\mathrm{bp}}}+2{t}_{{\mathrm{h}}}+2{t}_{{\mathrm{bpex}}}+{t}_{{\mathrm{bpm}}} $$ 2{t}_{{\mathrm{bp}}}+4{t}_{{\mathrm{h}}}+6{t}_{{\mathrm{bpex}}}+2{t}_{{\mathrm{bpm}}} $$ n{t}_{{\mathrm{bp}}}+2n{t}_{{\mathrm{h}}}+2n{t}_{{\mathrm{bpex}}}+n{t}_{{\mathrm{bpm}}} $
本研究$ 6{t}_{{\mathrm{eccm}}}+9{t}_{{\mathrm{h}}}+2{t}_{{\mathrm{ecca}}} $$ 7{t}_{{\mathrm{eccm}}}+10{t}_{{\mathrm{h}}}+3{t}_{{\mathrm{ecca}}} $$ 13{t}_{{\mathrm{eccm}}}+19{t}_{{\mathrm{h}}}+5{t}_{{\mathrm{ecca}}} $$ (5n+2){t}_{{\mathrm{eccm}}}+10n{t}_{{\mathrm{h}}}+3n{t}_{{\mathrm{ecca}}} $
Tab.3 Computational overhead of schemes in initial authentication phase
Fig.4 Computational overhead comparison of schemes in initial authentication phase
Fig.5 Computational overhead comparison of schemes in batch authentication phase
方案t3
车辆无人机总计算
文献[23]$ 6{t}_{{\mathrm{h}}} $$ 10{t}_{{\mathrm{h}}}+{t}_{{\mathrm{sig}}}+{t}_{{\mathrm{ver}}} $$ 16{t}_{{\mathrm{h}}}+{t}_{{\mathrm{sig}}}+{t}_{{\mathrm{ver}}} $
文献[24]$ {t}_{{\mathrm{bp}}}+{t}_{{\mathrm{h}}}+{t}_{{\mathrm{bpex}}}+{t}_{{\mathrm{bpm}}} $$ {t}_{{\mathrm{bp}}}+{t}_{{\mathrm{h}}}+5{t}_{{\mathrm{bpex}}}+{t}_{{\mathrm{bpm}}} $$ 2{t}_{{\mathrm{bp}}}+2{t}_{{\mathrm{h}}}+6{t}_{{\mathrm{bpex}}}+2{t}_{{\mathrm{bpm}}} $
本研究$ 4{t}_{{\mathrm{h}}} $$ 3{t}_{{\mathrm{eccm}}}+9{t}_{{\mathrm{h}}}+2{t}_{{\mathrm{ecca}}} $$ 3{t}_{{\mathrm{eccm}}}+13{t}_{{\mathrm{h}}}+2{t}_{{\mathrm{ecca}}} $
Tab.4 Computational overhead of schemes in handover authentication phase
Fig.6 Computational overhead comparison of schemes in handover authentication phase
Fig.7 Comparison of overall computational overhead of schemes
Fig.8 Comparison of UAV energy consumption in initial and handover authentication phases of schemes
Fig.9 Comparison of UAV energy consumption in batch authentication phase of schemes
Fig.10 Comparison of UAV throughput of authentication schemes
[1]   范茜莹, 黄传河, 朱钧宇, 等 无人机辅助车联网环境下干扰感知的节点接入机制[J]. 通信学报, 2019, 40 (6): 90- 101
FAN Xiying, HUANG Chuanhe, ZHU Junyu, et al Interference-aware node access scheme in UAV-aided VANET[J]. Journal of Communications, 2019, 40 (6): 90- 101
doi: 10.11959/j.issn.1000-436x.2019081
[2]   张海波, 兰凯, 陈舟, 等 车联网中基于环的匿名高效批量认证与组密钥协商协议[J]. 通信学报, 2023, 44 (6): 103- 116
ZHANG Haibo, LAN Kai, CHEN Zhou, et al Ring-based efficient batch authentication and group key agreement protocol with anonymity in Internet of vehicles[J]. Journal of Communications, 2023, 44 (6): 103- 116
doi: 10.11959/j.issn.1000-436x.2023055
[3]   况博裕, 李雨泽, 顾芳铭, 等 车联网安全研究综述: 威胁、对策与未来展望[J]. 计算机研究与发展, 2023, 60 (10): 2304- 2321
KUANG Boyu, LI Yuze, GU Fangming, et al Review of Internet of vehicle security research: threats, countermeasures, and future prospects[J]. Journal of Computer Research and Development, 2023, 60 (10): 2304- 2321
doi: 10.7544/issn1000-1239.202330464
[4]   FENG C, LIU B, GUO Z, et al Blockchain-based cross-domain authentication for intelligent 5G-enabled internet of drones[J]. IEEE Internet of Things Journal, 2022, 9 (8): 6224- 6238
doi: 10.1109/JIOT.2021.3113321
[5]   ZHOU Y, LONG X, CHEN L, et al Conditional privacy-preserving authentication and key agreement scheme for roaming services in VANETs[J]. Journal of Information Security and Applications, 2019, 47: 295- 301
doi: 10.1016/j.jisa.2019.05.018
[6]   WANG Z, ZHOU Y, QIAO Z, et al An anonymous and revocable authentication protocol for vehicle-to-vehicle communications[J]. IEEE Internet of Things Journal, 2023, 10 (6): 5114- 5127
doi: 10.1109/JIOT.2022.3222469
[7]   ABEYWICKRAMA H V, JAYAWICKRAMA B A, HE Y, et al Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance[J]. IEEE Access, 2018, 6: 58383- 58394
doi: 10.1109/ACCESS.2018.2875040
[8]   HEMMATI A, ZAREI M, SOURI A UAV-based Internet of vehicles: a systematic literature review[J]. Intelligent Systems with Applications, 2023, 18: 200226
doi: 10.1016/j.iswa.2023.200226
[9]   EL-ZAWAWY M A, BRIGHENTE A, CONTI M Authenticating drone-assisted Internet of vehicles using elliptic curve cryptography and blockchain[J]. IEEE Transactions on Network and Service Management, 2023, 20 (2): 1775- 1789
doi: 10.1109/TNSM.2022.3217320
[10]   ZHANG J, CUI J, ZHONG H, et al Intelligent drone-assisted anonymous authentication and key agreement for 5G/B5G vehicular ad-hoc networks[J]. IEEE Transactions on Network Science and Engineering, 2021, 8 (4): 2982- 2994
doi: 10.1109/TNSE.2020.3029784
[11]   TAN H, ZHENG W, VIJAYAKUMAR P Secure and efficient authenticated key management scheme for UAV-assisted infrastructure-less IoVs[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (6): 6389- 6400
doi: 10.1109/TITS.2023.3252082
[12]   SON S, KWON D, LEE S, et al Design of secure and lightweight authentication scheme for UAV-enabled intelligent transportation systems using blockchain and PUF[J]. IEEE Access, 2023, 11: 60240- 60253
doi: 10.1109/ACCESS.2023.3286016
[13]   KHAN M A, ULLAH I, ALKHALIFAH A, et al A provable and privacy-preserving authentication scheme for UAV-enabled intelligent transportation systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (5): 3416- 3425
doi: 10.1109/TII.2021.3101651
[14]   XIONG H, ZHAO Y, HOU Y, et al Heterogeneous signcryption with equality test for IIoT environment[J]. IEEE Internet of Things Journal, 2021, 8 (21): 16142- 16152
doi: 10.1109/JIOT.2020.3008955
[15]   ALI I, CHEN Y, ULLAH N, et al Bilinear pairing-based hybrid signcryption for secure heterogeneous vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (6): 5974- 5989
doi: 10.1109/TVT.2021.3078806
[16]   XIONG H, WU Y, JIN C, et al Efficient and privacy-preserving authentication protocol for heterogeneous systems in IIoT[J]. IEEE Internet of Things Journal, 2020, 7 (12): 11713- 11724
doi: 10.1109/JIOT.2020.2999510
[17]   PAN X, JIN Y, LI F An efficient heterogeneous authenticated key agreement scheme for unmanned aerial vehicles[J]. Journal of Systems Architecture, 2023, 136: 102821
doi: 10.1016/j.sysarc.2022.102821
[18]   DIFFIE W, HELLMAN M New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22 (6): 644- 654
doi: 10.1109/TIT.1976.1055638
[19]   LI F, WANG J, ZHOU Y, et al A heterogeneous user authentication and key establishment for mobile client-server environment[J]. Wireless Networks, 2020, 26: 913- 924
doi: 10.1007/s11276-018-1839-4
[20]   DODIS Y, OSTROVSKY R, REYZIN L, et al Fuzzy extractors: how to generate strong keys from biometrics and other noisy data[J]. SIAM Journal on Computing, 2008, 38 (1): 97- 139
doi: 10.1137/060651380
[21]   BURROWS M, ABADI M, NEEDHAM R A logic of authentication[J]. ACM Transactions on Computer System, 1990, 8 (1): 18- 36
doi: 10.1145/77648.77649
[22]   SCHNORR C P. Efficient identification and signatures for smart cards [C]// Advances in Cryptology-CRYPTO’89 Proceedings . New York: Springer, 1990: 239–252.
[23]   SON S, LEE J, PARK Y, et al Design of blockchain-based lightweight V2I handover authentication protocol for VANET[J]. IEEE Transactions on Network Science and Engineering, 2022, 9 (3): 1346- 1358
doi: 10.1109/TNSE.2022.3142287
[24]   WANG C, SHEN J, LAI J F, et al B-TSCA: blockchain assisted trustworthiness scalable computation for V2I authentication in VANETs[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9 (3): 1386- 1396
doi: 10.1109/TETC.2020.2978866
[1] Zihao SHEN,Yuyu TANG,Hui WANG,Peiqian LIU,Kun LIU. Clustering and deep learning based trajectory privacy protection mechanism for Internet of vehicles[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 20-28.
[2] Xue-jiao LIU,Hui-min WANG,Ying-jie XIA,Si-wei ZHAO. Task allocation method for Internet of vehicles spatial crowdsourcing with privacy protection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1267-1275.
[3] Xiu-bo LIANG,Jun-han WU,Yu ZHAO,Ke-ting YIN. Review of blockchain data security management and privacy protection technology research[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 1-15.
[4] Lei ZHANG,Jing ZHANG. Differential privacy protection scheme supporting high data utility and fault tolerance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1496-1505.
[5] PI Dun-Bei, CHEN Ke, CHEN Gang, DONG Jin-Xiang. Privacy protection method based on user profile of two-step sorting[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1659-1665.
[6] BANG Zhi-Yu, LI Shan-Beng, YANG Chao-Hui, LIN Xin. Anonymous authorization in trust management[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 897-902.