|
|
Cascading failure analysis of large-scale urban rail transit network considering station coupling relationship |
Jing LI( ),Qingchang LU*( ),Pengcheng XU,Qin WANG,Shixin WANG |
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China |
|
|
Abstract An improved coupled map lattice model was proposed to analyze the mechanism of cascading failures on the large-scale urban rail transit network with dense stations. The evolution of passenger flow between coupled stations and the anti-risk ability of coupled stations were quantified combining the characteristics of the dense distribution of stations on the large urban rail transit network. The spreading process and results of cascading failures were evaluated with the station failure ratio and the network efficiency ratio. The urban rail transit network in Shanghai was taken as an example to verify the feasibility of the proposed model. Results showed that the scale of cascading failures between coupled stations was about 2 times bigger than that between adjacent stations when the stations with high degree or large in-flow failed. Cascading failures triggered by the station with high betweenness centrality spread rapidly due to the impacts of cascading failures of coupled stations. Additionally, the effect of the network passenger flow on the cascading failures on the large-scale urban rail transit network was about 9 times bigger than that of topology, when considering the cascading failures between coupled stations. The results can provide scientific suggestions and support for the planning and design, and traffic incident management of large-scale urban rail transit network.
|
Received: 04 November 2023
Published: 30 August 2024
|
|
Fund: 国家自然科学基金资助项目(71971029);陕西省自然科学基础研究计划资助项目(2021JC-28). |
Corresponding Authors:
Qingchang LU
E-mail: jl@chd.edu.cn;qclu@chd.edu.cn
|
考虑站点耦合关系的大型城市轨道交通网络级联失效分析
为了解析站点分布密集的大型城市轨道交通网络级联失效传播机理,提出改进的耦合映射格子模型. 该模型结合大型城市轨道交通网络站点分布密集特征,量化耦合站点间客流演化及耦合站点抵抗力. 为了衡量级联失效在大型城市轨道交通网络中的传播过程与结果,提出失效站点数量比与网络效率比指标. 以上海市城市轨道交通网络为例,验证该模型的可行性. 结果表明:当节点度高或进站客流量大的站点失效后,耦合站点间的级联失效规模是邻接站点间的约2倍,且由于耦合站点间的级联失效的影响,介数中心性大的站点失效所引起的级联失效传播速度最快. 在考虑耦合站点间级联失效时,客流对大型城市轨道交通网络级联失效的作用力是拓扑结构的约9倍. 研究结论可以为城市轨道交通网络的规划设计与事故管控提供科学的建议.
关键词:
大型城市轨道交通网络,
级联失效,
耦合站点,
耦合映射格子模型,
站点抵抗力
|
|
[1] |
韩宝明, 习喆, 孙亚洁, 等 2022年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 2023, 36 (1): 1- 8 HAN Baoming, XI Zhe, SUN Yajie, et al Statistical analysis of urban rail transit operation in the world in 2022: a review[J]. Urban Rapid Rail Transit, 2023, 36 (1): 1- 8
|
|
|
[2] |
YANG Z, DONG X, GUO L Scenario inference model of urban metro system cascading failure under extreme rainfall conditions[J]. Reliability Engineering and System Safety, 2023, 229: 108888
doi: 10.1016/j.ress.2022.108888
|
|
|
[3] |
ALBERT R, JEONG H, BARABÁSI A L Error and attack tolerance of complex networks[J]. Nature, 2000, 406: 378- 382
doi: 10.1038/35019019
|
|
|
[4] |
谢本凯, 涂新雨, 李琴 城市轨道交通网络鲁棒性分析[J]. 科学技术与工程, 2020, 20 (28): 11693- 11697 XIE Benkai, TU Xinyu, LI Qin Robustness analysis of urban rail transit network[J]. Science Technology and Engineering, 2020, 20 (28): 11693- 11697
doi: 10.3969/j.issn.1671-1815.2020.28.043
|
|
|
[5] |
YIN D, HUANG W, SHUAI B, et al Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: from the perspective of multi-layer network[J]. Reliability Engineering and System Safety, 2022, 218: 108161
doi: 10.1016/j.ress.2021.108161
|
|
|
[6] |
潘守政, 何佳, 王英平, 等 环线对地铁网络弹性的影响研究[J]. 交通运输工程与信息学报, 2022, 20 (4): 100- 110 PAN Shouzheng, HE Jia, WANG Yingping, et al Influence of circle lines on the resilience of subway networks[J]. Journal of Transportation Engineering and Information, 2022, 20 (4): 100- 110
|
|
|
[7] |
杨景峰, 朱大鹏, 赵瑞琳 城轨网络站点重要度评估与级联失效抗毁性分析[J]. 中国安全科学学报, 2022, 32 (8): 161- 167 YANG Jingfeng, ZHU Dapeng, ZHAO Ruilin Evaluation of station importance and cascading failure resistance analysis of urban rail transit network[J]. China Safety Science Journal, 2022, 32 (8): 161- 167
|
|
|
[8] |
李淑庆, 宋易宵, 钟国剑. 考虑近邻度值之和的城市轨道网络抗毁性研究[EB/OL]. [2023-10-01]. https://doi.org/10.16182/j.issn1004731x.joss.23-0612.
|
|
|
[9] |
詹斌, 袁野, 杨世武, 等 基于加权网络的城市轨道交通网络特性与级联失效分析[J]. 武汉理工大学学报: 信息与管理工程版, 2022, 44 (6): 917- 923 ZHAN Bin, YUAN Ye, YANG Shiwu, et al Analysis of the structural characteristics and cascading failure of urban rail transit network based on weighted network model[J]. Journal of Wuhan University of Technology: Information and Management Engineering, 2022, 44 (6): 917- 923
|
|
|
[10] |
SUN L, HUANG Y, CHEN Y, et al Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12- 24
doi: 10.1016/j.tra.2017.12.008
|
|
|
[11] |
SHEN Y, REN G, RAN B Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China[J]. Transportation, 2021, 48 (2): 537- 553
doi: 10.1007/s11116-019-10066-y
|
|
|
[12] |
LU Q C, LI J, XU P C, et al Modeling cascading failures of urban rail transit network based on passenger spatiotemporal heterogeneity[J]. Reliability Engineering and System Safety, 2024, 242: 109726
doi: 10.1016/j.ress.2023.109726
|
|
|
[13] |
DIMITROV S D, CEDER A A method of examining the structure and topological properties of public-transport networks[J]. Physica A: Statistical Mechanics and its Applications, 2016, 451: 373- 387
doi: 10.1016/j.physa.2016.01.060
|
|
|
[14] |
LOPEZ F A, PAEZ A, CARRASCO J A, et al Vulnerability of nodes under controlled network topology and flow autocorrelation conditions[J]. Journal of Transport Geography, 2017, 59: 77- 87
doi: 10.1016/j.jtrangeo.2017.02.002
|
|
|
[15] |
MISHRA S, WELCH T F, JHA M K Performance indicators for public transit connectivity in multi-modal transportation networks[J]. Transportation Research Part A: Policy and Practice, 2012, 46 (7): 1066- 1085
doi: 10.1016/j.tra.2012.04.006
|
|
|
[16] |
李思佶, 帅斌, 刘奕杉 城市轨道交通网络级联失效机理研究[J]. 综合运输, 2020, 42 (7): 69- 74 LI Siji, SHUAI Bin, LIU Yishan Cascading failure mechanism of urban rail transit network[J]. China Transportation Review, 2020, 42 (7): 69- 74
|
|
|
[17] |
贺博威, 李成兵, 聂士达 城市群客运网络动态分配策略应急疏散仿真[J]. 内蒙古大学学报: 自然科学版, 2023, 54 (4): 392- 398 HE Bowei, LI Chengbing, NIE Shida Simulation of emergency evacuation under dynamic distribution strategy of passenger transport network un urban agglomeration[J]. Journal of Inner Mongolia University: Natural Science Edition, 2023, 54 (4): 392- 398
|
|
|
[18] |
李成兵, 李云飞, 吴鹏 考虑时间特性的城市群客运网络抗毁性研究[J]. 系统仿真学报, 2022, 34 (9): 2037- 2045 LI Chengbing, LI Yunfei, WU Peng Study on invulnerability of urban agglomeration passenger traffic network considering time characteristics[J]. Journal of System Simulation, 2022, 34 (9): 2037- 2045
|
|
|
[19] |
LIU R R, EISENBERG D A, SEAGER T P, et al The “weak” interdependence of infrastructure systems produces mixed percolation transitions in multilayer networks[J]. Scientific Reports, 2018, 8: 2111
doi: 10.1038/s41598-018-20019-7
|
|
|
[20] |
XU P C, LU Q C, XIE C, et al Modeling the resilience of interdependent networks: the role of function dependency in metro and bus systems[J]. Transportation Research Part A: Policy and Practice, 2024, 179: 103907
doi: 10.1016/j.tra.2023.103907
|
|
|
[21] |
潘倩倩, 刘润然, 贾春晓 具有弱依赖组的复杂网络上的级联失效[J]. 物理学报, 2022, 71 (11): 110505 PAN Qianqian, LIU Runran, JIA Chunxiao Cascading failures on complex networks with weak interdependency groups[J]. Acta Physica Sinica, 2022, 71 (11): 110505
doi: 10.7498/aps.70.20210850
|
|
|
[22] |
GAO C, FAN Y, JIANG S, et al Dynamic robustness analysis of a two-layer rail transit network model[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (7): 6509- 6524
doi: 10.1109/TITS.2021.3058185
|
|
|
[23] |
JO S, GAO L, LIU F, et al Cascading failure with preferential redistribution on bus-subway coupled network[J]. International Journal of Modern Physics C, 2021, 32 (8): 2150103
doi: 10.1142/S0129183121501035
|
|
|
[24] |
WU P, XU L, ZHONG L, et al Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations[J]. Journal of Transport Geography, 2022, 104: 103415
doi: 10.1016/j.jtrangeo.2022.103415
|
|
|
[25] |
LU Q C, ZHANG L, XU P C, et al Modeling network vulnerability of urban rail transit under cascading failures: a coupled map lattices approach[J]. Reliability Engineering and System Safety, 2022, 221: 108320
doi: 10.1016/j.ress.2022.108320
|
|
|
[26] |
ZHANG J, WANG Z, WANG S, et al Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices[J]. Reliability Engineering and System Safety, 2021, 214: 107707
doi: 10.1016/j.ress.2021.107707
|
|
|
[27] |
WU S, ZHU Y, LI N, et al Urban rail transit system network reliability analysis based on a coupled map lattice model[J]. Journal of Advanced Transportation, 2021, 2021: 5548956
|
|
|
[28] |
SAKAGUCHI H, OHTAKI M A coupled map lattice model for dendritic patterns[J]. Physica A: Statistical Mechanics and its Applications, 1999, 272 (3-4): 300- 313
doi: 10.1016/S0378-4371(99)00273-3
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|