Tensile behavior of one-side bolted T-stub to tube connection at fire and post-fire circumstances
Yang YOU1(),Pei-jun WANG2,*(),Le-le SUN3,Ji-hong YE4,Jian JIANG4
1. School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China 2. School of Civil Engineering, Shandong University, Jinan 250061, China 3. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China 4. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
The tensile behavior of the thread-fixed one-side bolted T-stub to tube connection under fire and post-fire circumstances was studied. Fire tests were conducted using both transient-state and steady-state methods, and a comparison was made with standard high-strength bolted connections. The post-fire test analyzed the influence of temperature and applied load on the residual behavior of the connection. The results revealed four typical failure modes of the connection, all the four modes remained unchanged in both fire and post-fire scenarios. The connection exhibited a rapid decrease in tensile performance at high temperatures. No thread failure on the steel tube column wall occurred before yielding in the connection. In the post-fire test, the residual load-bearing capacity of the connections was basically the same as at room temperature, indicating that the connections still possess good load-bearing capacity after a fire. The performance of the one-side bolts in connections with end-plate yielding accompanied by bolt failure is similar to that of standard bolts. Based on the test results, a method for calculating the load-bearing capacity of one-side bolted connections at high temperatures was proposed, and the calculated results matched well with the test results.
Yang YOU,Pei-jun WANG,Le-le SUN,Ji-hong YE,Jian JIANG. Tensile behavior of one-side bolted T-stub to tube connection at fire and post-fire circumstances. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2489-2500.
Tab.2Test result of specimens at ambient temperature
试件
θ/℃
FY/kN
FU/kN
破坏模式
S1
500
17.2
27.2
钢管屈服破坏
S1
700
5.5
7.5
钢管屈服破坏
S2
500
68.5
113.2
端板屈服伴随螺栓破坏
S2
700
17.5
25.9
端板屈服伴随螺栓破坏
S3
500
23.1
38.7
端板屈服破坏
S3
700
8.0
14.6
端板屈服破坏
S4
500
43.2
53.7
螺栓拉断
S4
700
9.3
11.3
螺栓拉断
S5
500
18.7
36.1
钢管屈服破坏
S5
700
5.7
8.7
钢管屈服破坏
S6
500
68.6
110.6
端板屈服伴随螺栓破坏
S6
700
18.5
27.2
端板屈服伴随螺栓破坏
Tab.3Steady-state test result of specimens
Fig.9Load-displacement curves of specimens in S1 group
Fig.10Load-displacement curves of specimens in S2 group
Fig.11Load-displacement curves of specimens in S3 group
Fig.12Load-displacement curves of specimens in S4 group
试件
μ
Fμ/kN
破坏模式
θF /℃
Δ/mm
S1
0.50
14.1
钢管屈服破坏
614.8
10.5
S1
0.75
21.1
钢管屈服破坏
552.7
6.8
S2
0.50
59.4
端板屈服伴随螺栓破坏
639.7
22.3
S2
0.75
89.1
端板屈服伴随螺栓破坏
573.5
18.6
S3
0.50
23.9
端板屈服破坏
654.0
29.9
S3
0.75
35.8
端板屈服破坏
578.9
27.1
S4
0.50
37.1
螺栓拉断
572.1
10.3
S4
0.75
55.6
螺栓拉断
500.5
7.5
S5
0.50
14.6
钢管屈服破坏
673.3
92.0
S5
0.75
21.8
钢管屈服破坏
605.1
83.0
S6
0.50
60.1
端板屈服伴随螺栓破坏
569.1
21.2
S6
0.75
90.2
端板屈服伴随螺栓破坏
502.3
19.0
Tab.4Transient-state test result of specimens
试件编号
θ/℃
μ
Fμ/kN
破坏阶段
破坏模式
FY,R/kN
FY,R/FY
FU,R/kN
FU,R/FU
S1
500
0.25
7.1
阶段3
钢管屈服破坏
27.0
0.96
39.7
0.95
S1
500
0.50
14.1
阶段3
钢管屈服破坏
26.8
0.95
38.8
0.93
S1
700
0.25
7.1
阶段2
钢管屈服破坏
—
—
—
—
S2
500
0.25
29.7
阶段3
端板屈服伴随螺栓破坏
107.6
0.91
164.9
0.95
S2
500
0.50
59.4
阶段3
端板屈服伴随螺栓破坏
104.3
0.88
153.7
0.89
S2
700
0.25
29.7
阶段2
端板屈服伴随螺栓破坏
—
—
—
—
S3
500
0.25
12.0
阶段3
端板屈服破坏
44.1
0.92
62.1
0.88
S3
500
0.50
23.9
阶段3
端板屈服破坏
43.4
0.91
61.9
0.88
S3
700
0.25
12.0
阶段3
端板屈服破坏
43.1
0.91
62.7
0.89
S4
500
0.25
18.6
阶段3
螺栓拉断
70.2
0.95
91.1
0.98
S4
500
0.50
37.1
阶段3
螺栓拉断
69.3
0.94
89.7
0.96
S4
700
0.25
18.6
阶段2
螺栓拉断
—
—
—
—
S5
500
0.25
7.3
阶段3
钢管屈服破坏
27.1
0.93
48.8
0.94
S5
500
0.50
14.6
阶段3
钢管屈服破坏
26.8
0.92
48.7
0.93
S5
700
0.25
7.3
阶段3
钢管屈服破坏
26.3
0.90
48.8
0.94
S6
500
0.25
30.1
阶段3
端板屈服伴随螺栓破坏
114.3
0.95
180.4
0.97
S6
500
0.50
60.1
阶段3
端板屈服伴随螺栓破坏
113.2
0.94
174.7
0.94
S6
700
0.25
30.1
阶段3
端板屈服伴随螺栓破坏
—
—
—
—
Tab.5Post-fire test result of specimens
Fig.13Failure mode of specimens in S5 group
Fig.14Comparison of load-displacement curves of specimens in S1 and S5 groups
Fig.15Failure mode of specimens in S6 group
Fig.16Comparison of load-displacement curves of specimens in S2 and S6 groups
Fig.17Analytical model of yielding of column wall
Fig.18Simplified calculation model considering large deformations of support
Fig.19Analytical model of column wall yielding with bolt failure
Fig.20Analytical model of yielding of end-plate
材料
θ/℃
fy/MPa
fu/MPa
E/GPa
6 mm钢板
20
338.6
468.0
204
6 mm钢板
500
210.1
313.6
140
6 mm钢板
700
67.2
73.1
28
12 mm钢板
20
314.0
460.0
204
12 mm钢板
500
206.5
308.2
140
12 mm钢板
700
59.9
68.1
28
螺栓
20
692.9
911.7
210
螺栓
500
372.3
489.8
113
螺栓
700
90.4
118.9
31
Tab.6Material properties of steel plates of different thickness and bolts
试件
θ/℃
试验结果
计算结果
(FE·FY?1)/%
FY/kN
破坏 模式
FE/kN
破坏 模式
S1
20
28.1
1
27.2
1
96.8
S1
500
17.2
1
16.9
1
98.3
S1
700
5.5
1
5.4
1
98.2
S2
20
118.8
2
125.4
2
105.6
S2
500
68.5
2
72.7
2
106.1
S2
700
17.5
2
18.9
2
108.0
S3
20
47.7
3
42.8
3
89.7
S3
500
23.1
3
25.1
3
108.7
S3
700
8.0
3
8.3
3
103.8
S4
20
74.1
4
74.2
4
100.1
S4
500
43.2
4
41.2
4
95.4
S4
700
9.3
4
10.0
4
107.5
Tab.7Comparison of calculated result given by proposed equations and test results
[1]
王志宇, 王清远, 刘晓凯, 等 基于屈服线理论的螺栓端板连接方钢管柱承载力计算模型研究[J]. 建筑结构学报, 2016, 37 (6): 160- 173 WANG Zhi-yu, WANG Qing-yuan, LIU Xiao-kai, et al Yield line theory based loading capacity analytical model of bolted endplate connections to square hollow section columns[J]. Journal of Building Structures, 2016, 37 (6): 160- 173
[2]
王静峰, 仲力平, 郭磊, 等 方套方中空夹层钢管混凝土柱单边螺栓连接节点拟动力试验分析[J]. 土木工程学报, 2019, 52 (9): 1- 11 WANG Jing-feng, ZHONG Li-ping, GUO Lei, et al Pseudo-dynamic test analysis on blind joints between square CFDST columns and steel beams[J]. China Civil Engineering Journal, 2019, 52 (9): 1- 11
[3]
蒋蕴涵, 李国强, 陈琛, 等 自锁式单向螺栓在拉剪共同作用下的承载力研究[J]. 土木工程学报, 2022, 55 (4): 23- 32 JIANG Yun-han, LI Guo-qiang, CHEN Chen, et al Study on bearing capacity of self-lock blind bolt subjected to combined tension and shear[J]. China Civil Engineering Journal, 2022, 55 (4): 23- 32
[4]
LEE J, GOLDSWORTHY H M, GAD E F Blind bolted T-stub connections to unfilled hollow section columns in low rise structures[J]. Journal of Constructional Steel Research, 2010, 66 (8/9): 981- 992
[5]
WAN C, BAI Y, DING C, et al Mechanical performance of novel steel one-sided bolted joints in shear[J]. Journal of Constructional Steel Research, 2020, 165: 105815
doi: 10.1016/j.jcsr.2019.105815
[6]
LI Y L, ZHAO X L Experimental study on stainless steel blind bolted T-stub to square hollow section connections[J]. Thin-Walled Structures, 2021, 167: 108259
doi: 10.1016/j.tws.2021.108259
乌兰托亚. 螺纹锚固单边螺栓连接节点破坏机理和设计对策研究[D]. 济南: 山东大学, 2021. WULAN Tuo-ya. Study on the failure mechanisms and design methods of the thread-fixed one-side bolted connection [D]. Jinan: Shandong University, 2021.
[9]
何明胜, 刘礼, 王京, 等 新型全螺栓连接钢框架抗震性能试验研究[J]. 建筑钢结构进展, 2020, 22 (1): 19- 25 HE Ming-sheng, LIU Li, WANG Jing, et al Experimental study on sesmic behavior of new type fully-bolted connection for steel frame[J]. Progress in Steel Building Structures, 2020, 22 (1): 19- 25
[10]
杨放, 付宜东, 黄炳生, 等 高温下螺栓球节点受拉性能试验研究[J]. 建筑结构学报, 2016, 37 (11): 55- 60 YANG Fang, FU Yi-dong, HUANG Bing-sheng, et al Experimental study on tension behavior of bolt-sphere joints in high temperature[J]. Journal of Building Structures, 2016, 37 (11): 55- 60
[11]
冯绍攀, 幸坤涛, 王新泉, 等 钢网架螺栓球节点用高强度螺栓过火冷却后力学性能试验研究[J]. 建筑结构学报, 2021, 42 (2): 198- 205 Feng Shao-pan, Xing Kun-tao, WANG Xin-quan, et al Experimental study on mechanical properties of high strength bolts used in steel grid bolted spherical joints after fire[J]. Journal of Building Structures, 2021, 42 (2): 198- 205
[12]
WANG P, YOU Y, XU Q, et al Shear behavior of lapped connections bolted by thread-fixed one-side bolts at elevated temperatures[J]. Fire Safety Journal, 2021, 125: 103415
doi: 10.1016/j.firesaf.2021.103415
[13]
陈颖智, 童乐为, 陈以一 组件法用于钢结构节点性能分析的研究进展[J]. 建筑科学与工程学报, 2012, 29 (3): 81- 89 CHEN Ying-zhi, TONG Le-wei, CHEN Yi-yi Research developments of component method for behavior of joints in steel structures[J]. Journal of Architecture and Civil Engineering, 2012, 29 (3): 81- 89
doi: 10.3969/j.issn.1673-2049.2012.03.013