Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1785-1793    DOI: 10.3785/j.issn.1008-973X.2023.09.010
    
Collaborative optimization of charging pile quantity and price for electric vehicle charging platform
Xi-qun CHEN1(),Yi-wei QIAN2,Dong MO1
1. Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Polytechnic Institute & Institute of Intelligent Transportation Systems, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2393KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A driver behavior decision model on the user side of electric vehicle (EV) charging platform was proposed based on the random utility maximization theory. Under the requirements of vehicle service and the constraints of charging stations, the Karush-Kuhn-Tucker (KKT) conditions, optimal quantity and charging price of different functions were derived for the objective functions of platform profit maximization and social welfare maximization, respectively. The parameter sensitivity was analyzed through the numerical experiments. The optimization results show that the appropriate charging price and the number of charging piles determine EV drivers’ willingness to different regions, the number of charging piles and the charging price have optimal solutions in multiple regions and periods. The model results show that, in spatial terms, the price and the quantity decrease with the distance increasing; in temporal terms, the pricing during the peak period is higher than that during the low period, and inter-regional pricing differences during the low period are more significant than those during the peak periods. Compared with different goals, the optimal charging price in social welfare maximization state is lower than that in profit maximization state, and the optimal number of charging piles to achieve maximum social welfare is more than that to achieve maximum profit. Results of sensitivity parameter analysis showed that, the battery capacity, the charging duration for unit battery capacity, and the sensitivity factor of multinomial Logit (MNL) model were negatively correlated with the target results, while positively correlated with users’ perceived utility.



Key wordselectric vehicle (EV)      charging platform      user behavior decision model      sensibility analysis      collaborative optimization     
Received: 20 October 2022      Published: 16 October 2023
CLC:  F 572  
  U 491  
Fund:  国家自然科学基金资助项目(72171210);浙江省自然科学基金资助项目(LZ23E080002)
Cite this article:

Xi-qun CHEN,Yi-wei QIAN,Dong MO. Collaborative optimization of charging pile quantity and price for electric vehicle charging platform. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1785-1793.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.010     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1785


电动汽车充电平台充电桩数量和价格协同优化

基于随机效用最大化理论,提出电动汽车充电平台用户端的用户行为决策模型. 在满足车辆服务需求和充电站约束条件下,分别推导企业利润最大化和社会福利最大化目标函数下的卡罗需-库恩-塔克(KKT)条件、最优数量和最优价格,通过数值实验分析参数敏感性. 最优化结果表明,合适的充电价格和充电桩数量决定用户前往不同区域充电的意愿,充电价格和充电桩数量在多区域多时段都有最优解. 模型结果表明:在空间上,价格和数量随距离增加呈现递减趋势,且递减幅度增大;在时间上,高峰期的定价高于低谷期的定价,低谷期的区域间定价差异大于高峰期的区域间定价差异. 对比不同目标,社会福利最大化目标下的最优充电价格普遍低于利润最大化目标下的价格,社会福利最大化下的最优充电桩数量多于利润最大化下的充电桩数量. 敏感性参数分析结果表明,电池容量、单位电池容量的充电时长、多项Logit(MNL)模型中的敏感度均与目标结果呈现负相关,与感知效用呈正相关.


关键词: 电动汽车(EV),  充电平台,  用户行为决策模型,  敏感性分析,  协同优化 
年份 CT
个人所得税 企业所得税
2017 11 966.37 32 117.29
2018 13 871.97 35 323.71
2019 10 388.53 37 303.77
2020 11 568.26 36 425.81
2021 13 992.68 42 042.38
Tab.1 National public tax situation in 2017—2021 亿元
行政区 $ {D}_{j}^{0} $ $ {D}_{j}^{1} $
上城区 8 000 4 500
西湖区 6 000 3 100
余杭区 4 000 1 800
Tab.2 Daily charging demand in three districts in Hangzhou 车次
Fig.1 Distribution of charging piles and average daily demand for charging in three districts in Hangzhou
行政区 Lij
上城区 西湖区 余杭区
上城区 0 15 30
西湖区 15 0 42
余杭区 30 42 0
Tab.3 Interarea traffic cost
Fig.2 Multi-regional coordinated price adjustment decision and profit trend change
Fig.3 Multi-regional coordinated price adjustment decision and social welfare trend change
行政区 $ \mathop p\nolimits_i^t $/元 Ni $ \mathop N\nolimits_{it}^{\rm{v}} $
高峰期 低谷期 高峰期 低谷期
上城区 1.67 1.35 288 51 85
西湖区 1.62 1.32 278 58 106
余杭区 1.57 1.28 183 50 92
Tab.4 Optimal price and number of charging piles under profit maximization
行政区域 $\mathop D\nolimits_{ij}^t $ 行政区域 $\mathop D\nolimits_{ij}^t $
高峰期 低谷期 高峰期 低谷期
上城区?上城区 1374 1194 余杭区?西湖区 40 28
西湖区?上城区 232 184 上城区?余杭区 27 22
余杭区?上城区 12 8 西湖区?余杭区 64 48
上城区?西湖区 348 292 余杭区?余杭区 820 551
西湖区?西湖区 1112 856 —— —— ——
Tab.5 Daily charging demand under profit maximization 车次
行政区 $\mathop p\nolimits_i^t $/元 Ni $ \mathop N\nolimits_{it}^{\rm{v}} $
高峰期 低谷期 高峰期 低谷期
上城区 1.62 1.28 309 52 86
西湖区 1.56 1.23 300 59 108
余杭区 1.51 1.20 195 51 94
Tab.6 Optimal price and number of charging piles under social welfare maximization
行政区域 $\mathop D\nolimits_{ij}^t $ 行政区域 $\mathop D\nolimits_{ij}^t $
高峰期 低谷期 高峰期 低谷期
上城区?上城区 1490 1308 余杭区?西湖区 44 31
西湖区?上城区 250 201 上城区?余杭区 29 25
余杭区?上城区 13 9 西湖区?余杭区 69 54
上城区?西湖区 381 328 余杭区?余杭区 889 613
西湖区?西湖区 1216 952 —— —— ——
Tab.7 Daily charging demand under social welfare maximization 车次
Fig.4 Sensitivity analysis curves for battery capacity and charging sensitivity factor
Fig.5 Sensitivity analysis curves for users perceived utility and sensitivity factor of MNL model
[1]   冯昊, 孙秋洁, 杨云露, 等 基于风险价值的电动汽车充电桩效益风险评估[J]. 现代电力, 2020, 37 (5): 501- 509
FENG Hao, SUN Qiu-jie, YANG Yun-lu, et al Benefit and risk assessment for electric vehicle charging pile based on value at risk[J]. Modern Electric Power, 2020, 37 (5): 501- 509
[2]   BIAN C, LI H, WALLIN F, et al Finding the optimal location for public charging stations–a GIS-based MILP approach[J]. Energy Procedia, 2019, 158: 6582- 6588
doi: 10.1016/j.egypro.2019.01.071
[3]   FANG Y, WEI W, MEI S, et al Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: an evolutionary game model in a small-world network[J]. Journal of Cleaner Production, 2020, 258: 120753
doi: 10.1016/j.jclepro.2020.120753
[4]   孙丙香, 阮海军, 许文中, 等 基于静态非合作博弈的电动汽车充电电价影响因素量化分析[J]. 电工技术学报, 2016, 31 (21): 75- 85
SUN Bing-xiang, RUAN Hai-jun, XU Wen-zhong, et al Quantitative analysis of influence factors about EV’s charging electricity price based on the static non-cooperative game theory[J]. Transactions of China Electrotechnical Society, 2016, 31 (21): 75- 85
[5]   洪奕, 刘瑜俊, 徐青山, 等 基于积分制和分时电价的电动汽车混合型精准需求响应策略[J]. 电力自动化设备, 2020, 40 (11): 106- 116
HONG Yi, LIU Yu-jun, XU Qing-shan, et al Hybrid targeted demand response strategy of electric vehicles based on integral system and time-of-use electricity price[J]. Electric Power Automation Equipment, 2020, 40 (11): 106- 116
[6]   赵星宇, 胡俊杰 集群电动汽车充电行为的深度强化学习优化方法[J]. 电网技术, 2021, 45 (6): 2319- 2327
ZHAO Xing-yu, HU Jun-jie Deep reinforcement learning based optimization for charging of aggregated electric vehicles[J]. Power System Technology, 2021, 45 (6): 2319- 2327
[7]   GONG L, CAO W, LIU K, et al Optimal charging strategy for electric vehicles in residential charging station under dynamic spike pricing policy[J]. Sustainable Cities and Society, 2020, 63: 102474
doi: 10.1016/j.scs.2020.102474
[8]   AUJLA G S, KUMAR N, SINGH M, et al Energy trading with dynamic pricing for electric vehicles in a smart city environment[J]. Journal of Parallel and Distributed Computing, 2019, 127: 169- 183
doi: 10.1016/j.jpdc.2018.06.010
[9]   高建树, 王明强, 宋兆康, 等 基于遗传算法的机场充电桩布局选址研究[J]. 计算机工程与应用, 2018, 54 (23): 210- 216
GAO Jian-shu, WANG Ming-qiang, SONG Zhao-kang, et al Study on site selection of airport charging pile based on genetic algorithm[J]. Computer Engineering and Applications, 2018, 54 (23): 210- 216
[10]   魏秀岭, 杜传祥 基于粒子群算法加权的 Voronoi 图电动汽车充网络优化规划[J]. 数字技术与应用, 2018, 36 (2): 119- 121
WEI Xiu-ling, DU Chuan-xiang Network voronoi diagram heuristic-based particle swarm continuous spatial optimization modeling[J]. Digital Technology and Application, 2018, 36 (2): 119- 121
[11]   CAPAR I, KUBY M, LEON V J, et al An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations[J]. European Journal of Operational Research, 2013, 227 (1): 142- 151
doi: 10.1016/j.ejor.2012.11.033
[12]   CHEN L, HUANG X, CHEN Z, et al Study of a new quick-charging strategy for electric vehicles in highway charging stations[J]. Energies, 2016, 9 (9): 744
doi: 10.3390/en9090744
[13]   宋建. 基于博弈模型的电动汽车有序充电研究[D]. 北京: 北京交通大学, 2019.
SONG Jian. Study on orderly charging of electric vehicle based on game model [D]. Beijing: Beijing Jiaotong University, 2019.
[1] MA Hao jun, ZHU Shao peng, YU Xiao li, XU Yin chuan, LIN Ding. Electronic differential control considering rolling movement for electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 566-573.
[2] IU Bin-bin, ZHU Shao-peng, MA Hao-jun, FANG Guang-ming, YING Zhen-you, NING Xiao-bin.
Design on simulation and test platform of electric vehicle’s drive control system Q
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1154-1159.
[3] QIU Bin-bin, ZHU Shao-peng, MA Hao-jun, FANG Guang-ming, YING Zhen-you, NING Xiao-bin.
Design on simulation and test platform of electric vehicle’s drive control system
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 4-5.