Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (10): 2057-2065    DOI: 10.3785/j.issn.1008-973X.2022.10.017
    
Analysis of dynamic filter cake permeability characteristics of slurry shield based on modified fluid loss test
Gang WEI1,2,3(),Yan-hua ZHU4,Xin-sheng YIN1,2,3(),Zhi DING1,2,3,Yun-liang CUI1,2,3
1. College of Engineering, Zhejiang University City College, Hangzhou 310015, China
2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China
3. Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou 310015, China
4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1915KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The modified fluid loss test was conducted to analyze the hydraulic conductivity of dynamic filter cake of slurry shield in order to analyze the influence of filter cake on the stability of the tunnel face of slurry shield. The calculation method of slurry density in slurry warehouse was proposed. The relationship curve between time and fluid loss, and the filter cake constitutive parameters (relationship between void rate, hydraulic conductivity and pressure) were obtained. The equation for average thickness of dynamic filter cake was derived. The decrease of filter cake pore ratio caused by the increase of test pressure can reduce the hydraulic conductivity. CMC-Na is the most effective in modifying slurry. The thickness of filter cake formed by adding polymer material is smaller, and there is a positive relationship between the thickness and the average hydraulic conductivity. The thickness of the filter cake will periodically change during shield excavation, and the cycle time of the dynamic filter cake depends on the tool layout and the rotational speed of the cutter. The average thickness of the dynamic filter cake is about 2/3 of the maximum filter cake thickness.



Key wordsslurry shield      slurry property      filter cake      fluid loss      hydraulic conductivity     
Received: 14 October 2021      Published: 25 October 2022
CLC:  U 455  
Fund:  国家自然科学基金资助项目(52178399,52278418);国家自然科学基金青年科学基金资助项目(51808493);浙江省教育厅科研计划资助项目(Y201839147);浙江省自然科学基金资助项目(LY21E080004);杭州市科技局规划资助项目(2020ZDSJ0639)
Cite this article:

Gang WEI,Yan-hua ZHU,Xin-sheng YIN,Zhi DING,Yun-liang CUI. Analysis of dynamic filter cake permeability characteristics of slurry shield based on modified fluid loss test. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2057-2065.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.10.017     OR     https://www.zjujournals.com/eng/Y2022/V56/I10/2057


基于改进滤失试验的泥水盾构动态泥膜渗透特性研究

为了研究泥膜对泥水盾构开挖面稳定性的影响,通过改进滤失试验研究泥水盾构动态泥膜的渗透特性,提出泥水舱泥浆密度的计算方法,获得时间与泥浆滤失量的关系曲线和泥膜的本构参数(孔隙比-渗透系数-压力的相互关系),推导动态泥膜平均厚度的计算公式. 由试验压力增长引起的泥膜孔隙比的减小,可以降低泥膜的渗透系数. CMC-Na对泥浆的改性效果最好. 添加高分子材料的泥浆形成的泥膜厚度变小,泥膜厚度与泥膜平均渗透系数存在正比关系. 在盾构掘进过程中,泥膜厚度会发生周期性变化,动态泥膜的周期时间取决于刀具的布局和刀盘的转速. 动态泥膜的平均厚度约为最大泥膜厚度的2/3.


关键词: 泥水盾构,  泥浆性质,  泥膜,  滤失量,  渗透系数 
Fig.1 Schematic of slurry shield construction
Fig.2 Fluid loss test device
参数 数值 参数 数值
wf/% 100 WP/% 72.6
wc/% 83.2 Ip 170.2
dr 2.55 S/(mL·(2g)?1) 12.0
WL/% 242.8 pH 7
Tab.1 Basic characteristic index of bentonites
泥浆型号 mb/g 材料 Mr/103 (mmmw?1)/% μs/s vm/s ρ/(g·cm?3) τy/Pa μ/(mPa·s) S/(mL·(2g)?1) d85/mm
SL1 50 0 16 30 1.03 0.15 1.50 12.0 0.033150
SL2 70 0 17 31 1.035 0.16 1.90 12.0 0.030580
SL3 50 APAM 25000 1 253 472 1.03 8.94 33.65 18.9 0.047820
SL4 50 CPAM 16000 1 19 38 1.03 0.10 5.80 15.9 0.135110
SL5 50 PAA-Na 1.2 1 19 34 1.03 0.51 3.40 16.6 0.069890
SL6 50 PAA-Na 15 1 22 40 1.03 1.28 6.05 18.3 0.066940
SL7 50 CMC 41 1 23 41 1.03 2.20 9.15 15.2 0.059670
SL8 50 CMC 57 1 264 291 1.03 32.04 63.35 17.3 0.050940
SL9 50 CMC-Na 8 1 31 51 1.03 2.96 19.40 15.3 0.063560
SL10 50 PAA-Na 1.2 2 20 36 1.03 0.87 5.95 17.3 0.044890
SL11 50 PAA-Na 15 2 23 38 1.03 3.12 6.45 19.1 0.087200
SL12 50 CMC 41 2 29 51 1.03 3.73 7.75 15.9 0.049960
SL13 50 CMC-Na 8 2 114 163 1.03 19.21 56.50 16.0 0.070220
SL14 50 QT 13.7 17 31 1.10 0.2 3.50 12.9 0.043574
SL15 50 QT 13.7 49 114 1.10 8.64 34.95 16.5 0.077433
SL15 50 CMC-Na 8 1 49 114 1.10 8.64 34.95 16.5 0.077433
Tab.2 Basic properties of slurry
Fig.3 Grading curve of slurry particles
Fig.4 Fluid loss test results
Fig.5 Relationship between ∆pt/V and V
Fig.6 Relationship between ∆pt/V2 and ∆p
Fig.7 Relationship between slurry pressure and filter cake average pore ratio
Fig.8 Relationship between slurry pressure and filter cake average hydraulic conductivity
泥浆型号 α k0/(m·s?1) δ e0
SL1 0.845 3.41×10?7 0.0754 3.763 6
SL2 0.909 3.97×10?7 0.0980 4.202 4
SL3 0.674 4.35×10?10 0.3509 26.308 7
SL4 0.405 4.93×10?9 0.1529 7.490 3
SL5 0.517 2.86×10?9 0.2836 9.230 0
SL6 0.682 3.70×10?9 0.0714 6.064 6
SL7 0.739 3.08×10?10 0.1362 9.963 2
SL8 0.376 3.25×10?11 0.2705 16.908 3
SL9 0.349 9.18×10?12 0.1181 6.736 0
SL10 0.676 1.92×10?9 0.1954 10.418 4
SL11 0.925 7.95×10?10 0.0861 8.824 7
SL12 0.712 2.33×10?10 0.0838 12.075 4
SL13 0.152 3.30×10?12 0.1097 8.454 7
SL14 0.825 3.23×10?7 0.1739 0.828 7
SL15 0.193 2.52×10?12 0.1199 2.217 2
Tab.3 Parameter of pore-hydraulic conductivity-pressure of filter cake
Fig.9 Average hydraulic conductivity of filter cake at 20 kPa
Fig.10 Relationship between average hydraulic conductivity of filter cake and swelling index
Fig.11 Schematic diagram of cutterhead cutting soil
Fig.12 Relationship between average pore ratio and thickness of filter cake
Fig.13 Variation of filter cake thickness with time at∆p = 20 kPa
[1]   刘成, 陆杨, 吕伟华, 等 砂性地层中盾构泥浆粗粒材料对成膜效果的影响[J]. 中国公路学报, 2018, 31 (9): 104- 111
LIU Cheng, LU Yang, LV Wei-hua, et al Effects of coarse-particle materials in slurry on filter-cake formation effectiveness in sandy strata[J]. China Journal of Highway and Transport, 2018, 31 (9): 104- 111
doi: 10.3969/j.issn.1001-7372.2018.09.012
[2]   尹鑫晟. 泥水盾构成膜规律及开挖面稳定性[D]. 杭州: 浙江大学, 2017: 27.
YIN Xin-sheng. Cake filtration and face stability of slurry shield tunnel [D]. Hangzhou: Zhejiang University, 2017: 27.
[3]   YIN X S, CHEN R P, MENG F Y, et al Face stability of slurry-driven shield with permeable filter cake[J]. Tunnelling and Underground Space Technology, 2021, 111 (1): 103841
[4]   吕乾乾, 孙振川, 杨振兴, 等 海水环境下盾构泥浆性能试验研究[J]. 隧道建设(中英文), 2019, 39 (2): 211- 218
LV Qian-qian, SUN Zhen-chuan, YANG Zhen-xing, et al Experimental study of shield slurry property under seawater environment[J]. Tunnel Construction, 2019, 39 (2): 211- 218
[5]   金大龙, 袁大军, 郑浩田, 等 高水压条件下泥水盾构开挖面稳定离心模型试验研究[J]. 岩土工程学报, 2019, 41 (9): 1653- 1660
JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, et al Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (9): 1653- 1660
[6]   XU T, BEZUIJEN A Pressure infiltration characteristics of bentonite slurry[J]. Géotechnique, 2018, 69 (4): 364- 368
[7]   BROERE A. Tunnel face stability and new CPT applications [D]. Delft: Delft University of Technology, 2001.
[8]   ZHOU S H, ZHANG X H, WU D, et al Mathematical modeling of slurry infiltration and particle dispersion in saturated sand[J]. Transport in Porous Media, 2018, 124 (1): 91- 116
doi: 10.1007/s11242-018-1054-x
[9]   WATANABE T, YAMAZAKI H Giant size slurry shield is a success in Tokyo[J]. Tunnels and Tunnelling, 1981, 13 (12): 13- 17
[10]   MIN F L, DU J R, ZHANG N, et al Experimental study on property change of slurry and filter cake of slurry shield under seawater intrusion[J]. Tunnelling and Underground Space Technology, 2019, 88 (1): 290- 299
[11]   韩晓瑞, 朱伟, 刘泉维, 等 泥浆性质对泥水盾构开挖面泥膜形成质量影响[J]. 岩土力学, 2008, 29 (Supple.1): 288- 292
HAN Xiao-rui, ZHU Wei, LIU Quan-wei, et al Influence of slurry property on filter cake quality on working face of slurry shield[J]. Rock and Soil Mechanics, 2008, 29 (Supple.1): 288- 292
doi: 10.3969/j.issn.1000-7598.2008.z1.058
[12]   吴迪, 周顺华, 温馨 砂性土层泥水盾构泥浆成膜性能试验[J]. 岩石力学与工程学报, 2015, 34 (Supple.1): 3460- 3467
WU Di, ZHOU Shun-hua, WEN Xin Laboratory test and application of filter cake formation in sand during slurry shield construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Supple.1): 3460- 3467
[13]   张亚洲, 闵凡路, 孙涛, 等 硬塑性黏土地层泥水盾构停机引起的地表塌陷机制研究[J]. 岩土力学, 2017, 38 (4): 1141- 1147
ZHANG Ya-zhou, MIN Fan-lu, SUN Tao, et al Analysis of causes for ground subsidence induced by slurry shield shutdown in hard plastic clay[J]. Rock and Soil Mechanics, 2017, 38 (4): 1141- 1147
[14]   叶伟涛, 王靖禹, 付龙龙, 等 福州中粗砂地层泥水盾构泥浆成膜特性试验研究[J]. 岩石力学与工程学报, 2018, 37 (5): 1260- 1269
YE Wei-tao, WANG Jing-yu, FU Long-long, et al Laboratory test and characteristic of filter film formation of slurry shield in medium-coarse sand stratum in Fuzhou[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1260- 1269
[15]   魏代伟, 朱伟, 闵凡路 砂土地层泥水盾构泥膜形成时间及泥浆压力转化率的试验研究[J]. 岩土力学, 2014, 35 (2): 423- 428
WEI Dai-wei, ZHU Wei, MIN Fan-lu Experimental study of forming time of filter cake and conversion rate of slurry pressure in slurry shield in sand stratum[J]. Rock and Soil Mechanics, 2014, 35 (2): 423- 428
[16]   邵生俊, 李建军, 杨扶银 粗粒土孔隙特征及其对泥浆渗透性的影响[J]. 岩土工程学报, 2009, 31 (1): 59- 65
SHAO Sheng-jun, LI Jian-jun, YANG Fu-yin Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (1): 59- 65
doi: 10.3321/j.issn:1000-4548.2009.01.010
[17]   RUTH B Study in filtration[J]. Industrial and Engineering Chemistry, 1935, 27 (6): 708- 723
doi: 10.1021/ie50306a024
[18]   沈胜强, 杜延军, 魏明俐, 等 CaCl2作用下PAC改良膨润土滤饼的渗透特性研究 [J]. 岩石力学与工程学报, 2017, 36 (11): 2810- 2817
SHEN Sheng-qiang, DU Yan-jun, WEI Ming-li, et al Hydraulic conductivity of filter cakes of polyanionic cellulose-amended bentonite slurries in calcium chloride solutions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (11): 2810- 2817
[19]   FEHERVARI A, GATES W P, PATTI A F, et al Potential hydraulic barrier performance of cyclic organic carbonate modified bentonite complexes against hyper-salinity[J]. Geotextiles and Geomembranes, 2016, 44 (5): 748- 760
doi: 10.1016/j.geotexmem.2016.06.002
[20]   TIEN C. Principle of filtration [M]. Oxford: Elsevier, 2012.
[21]   CHUNG J, DANIEL D E Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite[J]. Geotechnical Testing Journal, 2008, 31 (3): 243- 251
[22]   NGUYEN T B, LEE C, LIM J, et al Hydraulic characteristics of bentonite cake fabricated on cutoff walls[J]. Clays and Clay Minerals, 2012, 60 (1): 40- 51
doi: 10.1346/CCMN.2012.0600104
[23]   BEZUIJEN A, SANDERS M P M, HAMER D Parameters that influence the pressure filtration characteristics of bentonite grouts[J]. Géotechnique, 2009, 59 (8): 717- 721
[24]   范日东, 刘松玉, 杜延军 基于改进滤失试验的重金属污染膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40 (8): 2989- 2996
FAN Ri-dong, LIU Song-yu, DU Yan-jun Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites[J]. Rock and Soil Mechanics, 2019, 40 (8): 2989- 2996
[25]   闵凡路, 魏代伟, 姜腾, 等 泥浆在地层中的渗透特性试验研究[J]. 岩土力学, 2014, 35 (10): 2801- 2806
MIN Fan-lu, WEI Dai-wei, JIANG Teng, et al Experimental study of law of slurry infiltration in strata[J]. Rock and Soil Mechanics, 2014, 35 (10): 2801- 2806
[26]   RAZAKAMANANTSOA A R, BARAST G, DJERAN M I Hydraulic performance of activated calcium bentonite treated by polyionic charged polymer[J]. Applied Clay Science, 2012, 59-60 (1): 103- 114
[27]   魏纲, 朱彦华, 尹鑫晟 泥水盾构泥浆渗透试验及成膜规律研究进展[J]. 低温建筑技术, 2021, 43 (3): 76- 81
WEI Gang, ZHU Yan-hua, YIN Xin-sheng Research progress of slurry penetration test and filter cake forming law of slurry shield[J]. Low Temperature Architecture Technology, 2021, 43 (3): 76- 81
[28]   于泽溪. 盐溶液对钠质膨润土工程特性的影响研究[D]. 杭州: 浙江大学, 2019: 34.
YU Ze-xi. Study on the influence of salt solution on the engineering properties of sodium bentonite [D]. Hangzhou: Zhejiang University, 2019: 34.
[29]   陈仁朋, 尹鑫晟, 李育超, 等 泥水盾构泥膜渗透性及其对开挖面稳定性影响[J]. 岩土工程学报, 2017, 39 (11): 2102- 2108
CHEN Ren-peng, YIN Xin-sheng, LI Yu-chao, et al Permeability of filter cake and its influence on face stability of slurry shield-driven tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (11): 2102- 2108
doi: 10.11779/CJGE201711018
[30]   袁大军, 毛家骅, 王将, 等 软岩地层泥水盾构掘进刀盘堵塞现象研究[J]. 中国公路学报, 2022, 35 (4): 177- 185
YUAN Da-jun, MAO Jia-hua, WANG Jiang, et al Study on clogging phenomenon on cutterhead of slurry shield machine tunneling under soft rock[J]. China Journal of Highway and Transport, 2022, 35 (4): 177- 185
doi: 10.3969/j.issn.1001-7372.2022.04.014
[31]   陈钱宝, 陈雷, 梅晓君 地连墙用聚合物-膨润土复合泥浆泥膜质量研究[J]. 胶体与聚合物, 2017, 35 (3): 117- 119
CHEN Qian-bao, CHEN Lei, MEI Xiao-jun Study on membrane quality of polymer/bentonite composite slurry with its application in diaphragm wall[J]. Chinese Journal of Colloid and Polymer, 2017, 35 (3): 117- 119
doi: 10.13909/j.cnki.1009-1815.2017.03.007
[32]   刘学彦, 王复明, 袁大军, 等 泥水盾构支护压力设定范围及其影响因素分析[J]. 岩土工程学报, 2019, 41 (5): 908- 917
LIU Xue-yan, WANG Fu-ming, YUAN Da-jun, et al Range of support pressures for slurry shield and analysis of its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (5): 908- 917
[33]   刘海宁, 张亚峰, 刘汉东, 等 砂土地层中泥水盾构掌子面主动破坏模式试验研究[J]. 岩石力学与工程学报, 2019, 38 (3): 572- 581
LIU Hai-ning, ZHANG Ya-feng, LIU Han-dong, et al Experimental study on active failure modes of slurry shield-driven tunnel faces in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (3): 572- 581
doi: 10.13722/j.cnki.jrme.2018.0920
[1] Xin-sheng YIN,Yan-hua ZHU,Gang WEI,Zhi DING,Yun-liang CUI. Algorithm for predicting slurry penetration distance in front of slurry shield tunnel face[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2234-2242.
[2] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[3] Lian-hui JIA,Tai-yun LI. Key technologies of segment erector for super-large shield machine[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 816-823.
[4] PAN Qian, CHEN Yun min, LI Yu chao, WEN Yi duo. Hydraulic conductivity of bentonite filter cake and its impact on permeability of cutoff walls[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 231-237.
[5] ZHAN Liang-tong, XU Hui, LAN Ji-wu, LIU Zhao, CHEN Yun-min. Field and laboratory study on hydraulic characteristics of MSWs[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 478-486.
[6] KE Han,WANG Wen-fang, WEI Chang-chun, CHEN Yun-min, ZHAN Liang-tong. Experimental study on saturated hydraulic conductivity of MSW under different conditions[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1164-1170.
[7] ZHANG Zhong-miao, LIN Cun-gang,WU Shi-ming,ZOU Jian, LIU Jun-wei. Case study of ground surface consolidation settlements induced
by slurry shield tunnelling
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 431-440.