Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 152-160    DOI: 10.3785/j.issn.1008-973X.2022.01.017
    
Synthesis of Z-CoS2-MoS2/rGO composite and its electrochemical lithium storage performance
Xiao-nan JIANG(),Gang XU,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1670KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Dimethyl imidazole cobalt (ZIF-67) was employed as the cobalt source precursor to prepare Z-CoS2-MoS2/rGO (reduced graphene oxide) composite material by one-step hydrothermal method in order to develop the electrode materials for electrochemical lithium storage with high specific capacity and stable cycle performance. The microstructure and electrochemical lithium storage performance were analyzed. Results showed that the CoS2 particles in the Z-CoS2-MoS2/rGO composite had a smaller and more uniform particle size compared with CoS2-MoS2/rGO prepared by using CoCl2 as the cobalt source, and dispersed in MoS2 and the surface of rGO, forming the corresponding heterostructure. The reversible specific capacity of Z-CoS2-MoS2/rGO can reach 1 092 mA·h/g as an electrochemical lithium storage electrode material, and maintains 941 mA·h/g at a current density of 500 mA/g after 900 cycles, demonstrating its stable cycle performance. The excellent electrochemical lithium storage performance of Z-CoS2-MoS2/rGO is mainly attributed to the bimetallic sulfide composite that has more redox pairs for electrochemical lithium storage and the heterostructure formed by the uniform composited of CoS2 nanoparticles, MoS2 nanosheets and rGO.



Key wordsmetal sulfide composite      dimethyl imidazole cobalt      CoS2      MoS2      electrochemical lithium storage     
Received: 25 January 2021      Published: 05 January 2022
CLC:  TM 911  
Fund:  国家自然科学基金资助项目(21473156);浙江省科技计划资助项目(2015C01001)
Corresponding Authors: Wei-xiang CHEN     E-mail: dd52143@qq.com;weixiangchen@zju.edu.cn
Cite this article:

Xiao-nan JIANG,Gang XU,Wei-xiang CHEN. Synthesis of Z-CoS2-MoS2/rGO composite and its electrochemical lithium storage performance. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 152-160.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.017     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/152


Z-CoS2-MoS2/rGO的合成及电化学储锂性能

为了研发比容量高和循环性能稳定的电化学储锂电极材料,用二甲基咪唑钴(ZIF-67)作为Co源前驱体,通过一步水热法制备Z-CoS2-MoS2/rGO(还原氧化石墨烯)复合材料,研究微观结构和电化学储锂性能. 结果表明,与采用CoCl2作为钴源制得的CoS2-MoS2/rGO相比,Z-CoS2-MoS2/rGO复合材料中CoS2粒子有着更加细小和较均匀的粒径,很好地分散在MoS2和rGO表面,形成了相应的异质结构. 作为电化学储锂电极材料,Z-CoS2-MoS2/rGO的可逆比容量可以达到1 092 mA·h/g,经900次循环后在500 mA/g电流密度下保持了941 mA·h/g的储锂可逆比容量,显示了稳定的充放电循环性能. Z-CoS2-MoS2/rGO优异的电化学储锂性能主要归因于该双金属硫化物复合材料具有较多的电化学储锂电极反应电对以及复合材料中CoS2纳米颗粒、MoS2纳米片和rGO之间均匀的复合及所形成的异质结构.


关键词: 金属硫化物复合材料,  二甲基咪唑钴,  二硫化钴,  二硫化钼,  电化学储锂 
Fig.1 XRD patterns of different composite samples
Fig.2 SEM images of different composites
样品 nConMo n(Co+Mo)nS
MoS2/rGO - 1∶2.11
CoS2-MoS2/rGO 1∶1.18 1∶2.18
Z-CoS2-MoS2/rGO 1∶1.13 1∶2.20
Tab.1 Atomic ratio of Co, Mo and S element in MoS2/rGO, CoS2-MoS2/rGO and Z-CoS2-MoS2/rGO composite material
Fig.3 TGA curves of MoS2/rGO, CoS2-MoS2/rGO and Z-CoS2-MoS2/rGO composites
Fig.4 TEM/HRTEM images of different composites
Fig.5 XPS of Z-CoS2-MoS2/rGO composite
Fig.6 Cyclic voltammograms for the first three cycles of electrode at scan rate of 1.0 mV/s
Fig.7 The first three charge/discharge curves of different composite electrodes at current density of 100 mA/g
Fig.8 Cycle performance of MoS2/rGO, CoS2-MoS2/rGO, Z-CoS2-MoS2/rGO composite electrodes at current density of 100 mA/g
Fig.9 Rate capability of different composite electrodes and charge/discharge long-cyclic performance of Z-CoS2-MoS2/rGO electrode
Fig.10 Electrochemical impedance spectroscopy (EIS) of different composite electrodes and equivalent circuit model (CPE represents constant phase element)
电极材料 Re Rf Rct
MoS2/rGO 10.97 35.27 55.77
CoS2-MoS2/rGO 11.22 43.82 65.58
Z-CoS2-MoS2/rGO 10.74 26.42 36.24
Tab.2 Electrode kinetic parameters obtained by EIS fitting
[1]   TENG Y Q, ZHAO H L, ZHANG Z J, et al MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes [J]. ACS Nano, 2016, 10 (9): 8526- 8535
doi: 10.1021/acsnano.6b03683
[2]   LIANG S Q, ZHOU J, LIU J, et al PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties [J]. CrystEngComm, 2013, 15 (25): 4998- 5002
doi: 10.1039/c3ce40392k
[3]   WANG Q F, ZOU R Q, XIA W, et al Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-Doped porous carbon shell for high performance lithium-ion batteries [J]. Small, 2015, 11 (21): 2511- 2517
doi: 10.1002/smll.201403579
[4]   LUO B, FANG Y, WANG B, et al Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage [J]. Energy and Environmental Science, 2012, 5 (1): 5226- 5230
doi: 10.1039/C1EE02800F
[5]   DU G, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communication, 2010, 46 (7): 1106- 1108
doi: 10.1039/B920277C
[6]   XIAO J, CHOI D, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524
doi: 10.1021/cm101254j
[7]   CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728
doi: 10.1021/nn200659w
[8]   朱清, 任王瑜, 姜孝男, 等 Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能 [J]. 浙江大学学报: 工学版, 2019, 53 (7): 1306- 1314
ZHU Qing, REN Wang-yu, JIANG Xiao-nan, et al Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1306- 1314
[9]   YE J B, MA L, CHEN W X, et al Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage [J]. Journal of Materials Chemistry A, 2015, 3 (13): 6884- 6893
doi: 10.1039/C5TA00006H
[10]   KUANG P Y, TONG T, FAN K, et al In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range[J]. ACS Catalysis, 2017, 7 (9): 6179- 6187
doi: 10.1021/acscatal.7b02225
[11]   HU P, JIA Z Y, WANG Y, et al Interface engineering of hierarchical MoS2/ZnS/C heterostructures as anode materials for highly improved lithium storage capability [J]. ACS Applied Energy Materials, 2020, 3 (8): 7856- 7864
doi: 10.1021/acsaem.0c01266
[12]   ZHANG Y, SUN W P, RUI X H, et al One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors [J]. Small, 2015, 11 (30): 3694- 702
doi: 10.1002/smll.201403772
[13]   BAI Y, ZENG M, WU X, et al Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage[J]. Applied Surface Science, 2020, 510: 145477
doi: 10.1016/j.apsusc.2020.145477
[14]   HE Q, LIU J S, LI Z H, et al Solvent-free synthesis of uniform MOF shell-derived carbon confined SnO2/Co nanotubes for highly reversible lithium storage [J]. Small, 2017, 13 (37): 1701504
doi: 10.1002/smll.201701504
[15]   YUAN Y, CHEN X Y, ZHANG X, et al A MOF-derived CuCo(O)@ carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane[J]. Inorganic Chemistry Frontiers, 2020, 7 (10): 2043- 2049
doi: 10.1039/D0QI00023J
[16]   HUANG G C, CHEN T, CHEN W X, et al Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium [J]. Small, 2013, 9 (21): 3693- 3703
doi: 10.1002/smll.201300415
[17]   XU S R, ZHU Q, CHEN T, et al Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances [J]. Materials Chemistry and Physics, 2018, 219: 399- 410
doi: 10.1016/j.matchemphys.2018.08.048
[18]   WANG S G, LI X, CHEN Y, et al A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy [J]. Advanced Materials, 2015, 27 (17): 2775- 2782
doi: 10.1002/adma.201500870
[19]   ZUO X X, CHANG K, ZHAO J, et al Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material [J]. Journal of Materials Chemistry A, 2016, 4 (1): 51- 58
doi: 10.1039/C5TA06869J
[20]   MA Z L, LI Z, HU K, et al The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer [J]. Journal of Power Sources, 2016, 325: 71- 78
doi: 10.1016/j.jpowsour.2016.04.139
[21]   DENG Z H, LI L, DING W, et al Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction [J]. Chemical Communication, 2015, 51: 1893
doi: 10.1039/C4CC08491H
[22]   ZHU K X, ZHU Z, JIN B, et al 3D flower-like Co1−xS/MoS2 composite for long-life and high-rate lithium storage [J]. Journal of Energy Storage, 2020, 20: 101135
[1] Wang-yu REN,Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN. MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1628-1636.
[2] Shi-cheng HOU,Wang-yu REN,Qing ZHU,Wei-xiang CHEN. Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1610-1617.