The noise source impedance of inverter has a great influence on the filtering effect of electromagnetic interference (EMI) filter, and it is necessary to extract and analyze the noise source impedance of inverter when designing the filter. A passive EMI filter design method based on terminal model of inverter was studied. A terminal EMI model of inverter was established. By measuring terminal voltage as well as terminal current of inverter and using optimized algorithm, the equivalent noise source and the equivalent source impedance of inverter were extracted. Considering the noise source impedance, the load impedance and the high-frequency characteristics of filter components, optimization algorithm was used to calculate the component parameters of filter, so as to realize the quantitative design of EMI filter. For the problem that common-mode EMI at some frequency points exceeded limit after connecting the filter, the cause of resonance was analyzed, and a damping circuit design method was proposed. Connecting the designed EMI filter for experiment, EMI of the inverter output lines met the standard, which validated the proposed EMI filter design method.
Tian-xiang ZHOU,Xiao-yan ZHENG,Shi-ze YE,Heng-lin CHEN. Electromagnetic interference filter design based on terminal model of inverter. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2215-2224.
Tab.1Component parameters and connection mode of insertion impedances
Fig.3Amplitude-frequency curve of equivalent noise sources
Fig.4Amplitude-frequency curve of equivalent noise source impedances
Fig.5Comparison of measured and calculated terminal voltage ULG
Fig.6Comparison of measured and calculated terminal voltage UNG
Fig.7Terminal DM EMI / CM EMI model of inverter
Fig.8Comparison of terminal DM voltage and CM voltage with conducted EMI limit
Fig.9Required DM insertion loss and CM insertion loss of inverter
Fig.10Terminal DM EMI model after connecting π-shaped DM filter
方案
CX1/μF
CX2/μF
LDM/μH
1
4.47
2.83
5.46
2
3.91
4.53
3.55
3
2.94
2.15
7.73
Tab.2Component parameters of π-shaped DM filter obtained by simulation
Fig.11DM EMI after connecting π-shaped DM filter
Fig.12Terminal CM EMI model after connecting π-shaped CM filter
Fig.13Terminal CM EMI model after connecting two-stage π-shaped CM filter
方案
CY1/nF
CY2/nF
CY3/nF
LCM1/mH
LCM2/mH
1
1.20
0.23
0.46
5.00
0.42
2
1.86
0.13
0.24
1.60
0.46
3
1.35
0.10
0.10
0.38
5.00
Tab.3Component parameters of two-stage π-shaped CM filter obtained by simulation
方案
CY1/nF
CY2/nF
CY3/nF
LCM1/mH
LCM2/mH
1
1.0
0.5
0.5
5.0
0.4
2
2.2
0.5
0.5
1.5
0.4
3
1.0
0.5
0.5
0.5
5.0
Tab.4Component parameters of two-stage π-shaped CM filter actually selected
Fig.14CM EMI after connecting two-stage π-shaped CM filter
Fig.15High-frequency equivalent model of two-stage π-shaped CM filter
Fig.16CM EMI after adding different damping resistors
Fig.17Connection diagram of EMI filter
Fig.18EMI of L-line and N-line after connecting filter
[1]
张举良, 高志强, 董全智, 等 光伏发电直流侧共模电压干扰的抑制研究[J]. 电力系统保护与控制, 2019, 47 (14): 102- 108 ZHANG Ju-liang, GAO Zhi-qiang, DONG Quan-zhi, et al Research on suppression of photovoltaic DC side common-mode voltage interference[J]. Power System Protection and Control, 2019, 47 (14): 102- 108
doi: 10.7667/PSPC20191413
[2]
HAMZA D, QIU M, JAIN P K Application and stability analysis of a novel digital active EMI filter used in a grid-tied PV microinverter module[J]. IEEE Transactions on Power Electronics, 2013, 28 (6): 2867- 2874
doi: 10.1109/TPEL.2012.2219074
[3]
王冕, 曲东昌, 陈国柱 三相脉冲调制变流器驱动电源电磁兼容性能提升[J]. 浙江大学学报: 工学版, 2016, 50 (4): 657- 662 WANG Mian, QU Dong-chang, CHEN Guo-zhu EMC performance improvement of auxiliary power supplies in three-phase PWM converters[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 657- 662
doi: 10.3785/j.issn.1008-973X.2016.04.009
[4]
JIANG S, LIU Y, LIANG W, et al Active EMI filter design with a modified LCL-LC filter for single-phase grid-connected inverter in vehicle-to-grid application[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (11): 10639- 10650
doi: 10.1109/TVT.2019.2944220
[5]
张逸成, 叶尚斌, 张佳佳, 等 电力电子设备传导噪声抑制措施研究综述[J]. 电工技术学报, 2017, 32 (14): 77- 86 ZHANG Yi-cheng, YE Shang-bin, ZHANG Jia-jia, et al Review of conducted noise suppression method for power electronic and electrical equipment[J]. Transactions of China Electrotechnical Society, 2017, 32 (14): 77- 86
[6]
周峰, 王世山, 孟小利 基于多物理场耦合特性的集成式母线型EMI滤波器设计[J]. 中国电机工程学报, 2016, 36 (9): 2494- 2504 ZHOU Feng, WANG Shi-shan, MENG Xiao-li The design of integrated bus-bar EMI filter based on the coupling characteristics of multi-physical fields[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36 (9): 2494- 2504
[7]
石磊磊, 王世山, 徐晨琛 二端口网络散射参数理论及其在平面EMI滤波器测试中的应用[J]. 电工技术学报, 2013, 28 (2): 78- 85 SHI Lei-lei, WANG Shi-shan, XU Chen-chen Theory of scatter parameters of two port network and its application in the test of planar EMI filter[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 78- 85
doi: 10.3969/j.issn.1000-6753.2013.02.011
[8]
BAISDEN A C, BOROYEVICH D, WANG F Generalized terminal modeling of electromagnetic interference[J]. IEEE Transactions on Industry Applications, 2010, 46 (5): 2068- 2079
doi: 10.1109/TIA.2010.2058836
[9]
BISHNOI H, BAISDEN A C, MATTAVELLI P, et al Analysis of EMI terminal modeling of switched power converters[J]. IEEE Transactions on Power Electronics, 2012, 27 (9): 3924- 3933
doi: 10.1109/TPEL.2012.2190100
[10]
SHUAI Z, ZHANG J, TANG L, et al Frequency shifting and filtering algorithm for power system harmonic estimation[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (3): 1554- 1565
doi: 10.1109/TII.2018.2844191
[11]
CHEN H, WANG T Estimation of common-mode current coupled to the communication cable in a motor drive system[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60 (6): 1777- 1785
doi: 10.1109/TEMC.2018.2804341
[12]
CHEN H, YE S Modeling of common-mode impedance of an inverter-fed induction motor from online measurement[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60 (5): 1581- 1589
doi: 10.1109/TEMC.2017.2779886
[13]
LI K R, SEE K Y, LI X M Inductive coupled in-circuit impedance monitoring of electrical system using two-port ABCD network approach[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (9): 2489- 2495
doi: 10.1109/TIM.2015.2403091
[14]
赵波, 闫景瑞, 赵阳 基于双电流探头和四种状态测试的EMI噪声源阻抗提取方法[J]. 电气技术, 2016, (9): 21- 25 ZHAO Bo, YAN Jing-rui, ZHAO Yang EMI noise source impedance extraction method based on double current probe and four kinds of state test[J]. Electrical Engineering, 2016, (9): 21- 25
doi: 10.3969/j.issn.1673-3800.2016.09.005
[15]
HAMI F, BOULZAZEN H, KADI H High-frequency characterization and modeling of EMI filters under temperature variations[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59 (6): 1906- 1915
doi: 10.1109/TEMC.2017.2679700
[16]
KOVACEVIC I F, FRIEDLI T, MUSING A M, et al 3-D electromagnetic modeling of parasitics and mutual coupling in EMI filters[J]. IEEE Transactions on Power Electronics, 2014, 29 (1): 135- 149
doi: 10.1109/TPEL.2013.2254130
[17]
CHEN H, YE S Modeling and optimization of EMI filter by using artificial neural network[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61 (6): 1979- 1987
doi: 10.1109/TEMC.2019.2944887
[18]
郑晓燕, 叶世泽, 陈恒林 基于全相位FFT的端口电磁干扰建模方法[J]. 电工技术, 2020, (13): 25- 28 ZHENG Xiao-yan, YE Shi-ze, CHEN Heng-lin Port EMI modeling method based on all-phase FFT[J]. Electric Engineering, 2020, (13): 25- 28
[19]
王兆华, 黄翔东. 数字信号全相位谱分析与滤波技术[M]. 北京: 电子工业出版社, 2009.
[20]
王培康, 郑峰, 杨小瑜, 等 一种调整共模噪声源阻抗并优化EMI滤波器性能的方法[J]. 中国电机工程学报, 2014, 34 (6): 993- 1000 WANG Pei-kang, ZHENG Feng, YANG Xiao-yu, et al A method for adjusting common mode noise impedance and optimizing EMI filters[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34 (6): 993- 1000
[21]
张宇. 考虑源阻抗影响的EMI滤波器优化设计[D]. 武汉: 华中科技大学, 2014. ZHANG Yu. Optimized design of EMI filter considering noise source impedance[D]. Wuhan: Huazhong University of Science and Technology, 2014.