|
|
Identity recognition under real scenes |
Yu-ming YAN1( ),Jian-feng HE2,Shu-zhao LI1,Hui-min YU1,*( ),Feng WANG2,Zhou-feng REN2 |
1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310007, China 2. Jiangnan Social University, Suzhou 215124, China |
|
|
Abstract An identity recognition system combing face recognition and person Re-identification (Re-id) was designed for identity recognition under real scenes. When the pedestrian ’s face was detected, the recognition accuracy of the system was significantly improved through the face recognition technology. Improved cloth-elimination shape-distillation (ICESD) module was used to solve the problem of cloth-changing of pedestrians. In a real scene with a large number of unknown pedestrians, the recognition accuracy is significantly improved through the threshold filtering recognition process of identifying the known pedestrian first and then the specific pedestrian category. The application tests and comparative tests in real scenes demonstrate that the proposed Re-id method achieves significant performance improvement compared with mainstream deep learning methods under cloth-changing scenarios, and face recognition technology can also significantly improve the overall recognition accuracy. In the meantime, the real-time analysis of the system shows that the system can be deployed under real scenes.
|
Received: 22 March 2021
Published: 05 November 2021
|
|
Fund: 之江实验室开放基金资助项目(2019KD0AB01) |
Corresponding Authors:
Hui-min YU
E-mail: 21931092@zju.edu.cn;yhm2005@zju.edu.cn
|
现实场景下行人身份识别
为了实现现实场景下的行人身份识别,结合人脸识别和行人重识别(Re-id)技术设计行人身份识别系统. 人脸识别技术能够在检测到行人的人脸时提高行人身份识别的精度,行人重识别通过改进的衣着信息消除(ICESD)模块来解决现实场景下的行人换装问题. 在存在大量未知行人的现实场景下,通过先识别是否为已知行人,然后识别具体行人类别的阈值过滤识别过程显著提升准度. 现实场景的应用测试和比较试验表明,相较于主流深度学习方法,在换装场景下,行人重识别技术能实现性能的显著提升,人脸识别也能显著提升整体识别准度. 系统的实时性分析表明,行人身份系统可以布置在现实场景下.
关键词:
人脸识别,
换装行人重识别,
现实场景,
行人身份识别,
阈值过滤
|
|
[1] |
罗浩, 姜伟, 范星, 等 基于深度学习的行人重识别研究进展[J]. 自动化学报, 2019, 45 (11): 2032- 2049 LUO Hao, JIANG Wei, FAN Xing, et al A survey on deep learning based person re-identification[J]. Acta Automatica Sinica, 2019, 45 (11): 2032- 2049
|
|
|
[2] |
李幼蛟, 卓力, 张菁, 等 行人再识别技术综述[J]. 自动化学报, 2018, 44 (9): 1554- 1568 LI You-jiao, ZHUO Li, ZHANG Jing, et al A survey of person re-identification[J]. Acta Automatica Sinica, 2018, 44 (9): 1554- 1568
|
|
|
[3] |
QIAN X L, WANG W X, ZHANG L, et al. Long-term cloth-changing person re-identification [EB/OL]. [2020-05-26]. https://arxiv.org/abs/2005.12633.
|
|
|
[4] |
JIN X, LAN C, ZENG W, et al. Style normalization and restitution for generalizable person re-identification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3140-3149.
|
|
|
[5] |
WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 79-88.
|
|
|
[6] |
KHATUN A, DENMAN S, SRIDHARAN, S, et al. End-to-end domain adaptive attention network for cross-domain person re-identification [EB/OL]. [2020-05-07]. https://arxiv.org/abs/2005.03222.
|
|
|
[7] |
ZHAI Y P, LU S J. AD-Cluster: augmented discriminative clustering for domain adaptive person re-identification [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9018-9027.
|
|
|
[8] |
SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 815-823.
|
|
|
[9] |
WEN Y D, ZHANG K P, LI Z F. A discriminative feature learning approach for deep face recognition [C]// Proceedings of the 2016 European Conference on Computer Vision. Amsterdam: Springer, 2016: 499-515.
|
|
|
[10] |
ZHANG J, LIU L, XU C, et al. Hierarchical and efficient learning for person re-identification [EB/OL]. [2020-05-18]. https://arxiv.org/abs/2005.08812.
|
|
|
[11] |
SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline) [C]// Proceedings of the 2016 European Conference on Computer Vision. Munich: Springer, 2018: 3387–3396.
|
|
|
[12] |
LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 2197−2206.
|
|
|
[13] |
TAGORE N K, SINGH A, MANCHE S, et al. Deep learning based person re-identification [EB/OL]. [2020-05-07]. https://arxiv.org/abs/2005.03293.
|
|
|
[14] |
HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
|
|
[15] |
ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization [EB/OL]. [2016-06-27]. https://arxiv.org/abs/1607.08022.
|
|
|
[16] |
QIAN X L, FU Y, XIANG T, et al Leader-based multi-scale attention deep architecture for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 371- 385
doi: 10.1109/TPAMI.2019.2928294
|
|
|
[17] |
LI W, ZHU X, GONG S. Harmonious attention network for person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2285–2294.
|
|
|
[18] |
CHEN B, DENG W, HU J. Mixed high-order attention network for person re-identification [C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 371-381.
|
|
|
[19] |
周勇, 王瀚正, 赵佳琦, 等. 基于可解释注意力部件模型的行人重识别方法[EB/OL]. [2020-08-23]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=MOTO20201105000&uniplatform=NZKPT&v=JCreBvAGjWgg9eTStxOX1MHBH7tyLrog82SWoZ97XdB1Id9qWj877hYBzM9evYAl. ZHOU Yong, WANG Han-zheng, ZHAO Jia-qi, et al. Interpretable Attention Part Model for Person Re-identification [EB/OL]. [2020-08-23]. https:/kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=MOTO20201105000&uniplatform=NZKPT&v=JCreBvAGjWgg9eTStxOX1MHBH7tyLrog82SWoZ97XdB1Id9qWj877hYBzM9evYAl.
|
|
|
[20] |
ZHANG K, ZHANG Z, LI Z, et al Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23: 1499- 1503
doi: 10.1109/LSP.2016.2603342
|
|
|
[21] |
JIN X., LAN C, ZENG W, et al. Global distance distributions separation for unsupervised person re-identification [EB/OL]. [2020-06-01]. https://arxiv.org/pdf/2006.00752.pdf.
|
|
|
[22] |
LIN Y T, XIE L X. Unsupervised person re-identification via softened similarity learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3387-3396.
|
|
|
[23] |
ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1116–1124.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|