Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1594-1606    DOI: 10.3785/j.issn.1008-973X.2021.08.021
    
Photocurable 3D printing molding of propellants and explosives
Bo-jun TAN(),Bin CHEN,Ya-jing LIU,Wei WANG,Zi-sen LI,Ying-lei WANG(),Chuan XIAO
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
2. Advanced Technology Generalization Institute of China North Industries Group, Beijing 100089, China
3. Academy of Ordnance Science, Beijing 100089, China
Download: HTML     PDF(1785KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The research status of photocuring 3D printing technology in gun propellant, propellants and explosives were summarized according to the technical characteristics and application directions. The principle and process characteristics of stereo lithography apparatus, digital light process and continuous liquid interface production were generalized. The problems in the research of photocurable 3D printing molding of propellants and explosives were analyzed, the importance of new adhesives for photocurable 3D printing molding of propellants and explosives was put forward, and the development direction and trend of photocurable adhesive were summarized. It is pointed out that the photocuring 3D printing technology of propellants and explosives should be systematically studied according to the application background, and the design and preparation of energetic adhesive, the interaction between adhesive and solid packing surface, the process adaptability of formulations and the fine characterization of performance should be systematically studied to provide reference for the application of photocurable 3D printing technology in propellants and explosives.



Key wordsphotocurable 3D printing      development      propellants and explosives      molding principle      adhesive material     
Received: 01 April 2021      Published: 01 September 2021
CLC:  O 63  
  TQ 32  
Fund:  国家自然科学基金资助项目(21875185,22005238,22105156)
Corresponding Authors: Ying-lei WANG     E-mail: tanbj204@163.com;wangyl204@163.com
Cite this article:

Bo-jun TAN,Bin CHEN,Ya-jing LIU,Wei WANG,Zi-sen LI,Ying-lei WANG,Chuan XIAO. Photocurable 3D printing molding of propellants and explosives. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1594-1606.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.021     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1594


火炸药光固化3D打印成型

针对发射药、推进剂、炸药光固化3D打印技术,按照光固化3D打印技术的特点和应用方向,综述火炸药光固化3D打印技术的研究进展. 概述立体光固化成型技术、数字光处理技术、连续液面制造技术的成型原理以及工艺特点,分析光固化3D打印火炸药研究存在的问题,提出光固化3D打印火炸药采用新型黏合剂的重要性,总结光固化黏合剂的发展方向和趋势,并对火炸药光固化3D打印技术发展方向进行预测. 指出火炸药光固化3D打印技术应按照火炸药的应用背景,对光固化3D打印火炸药用含能黏合剂设计与制备、黏合剂与固体填料表界面作用、工艺适配性、性能精细化表征进行系统化研究,为光固化3D打印技术在火炸药中的应用提供参考.


关键词: 光固化3D打印,  研究进展,  火炸药,  成型原理,  黏合剂 
Fig.1 Composition of photocurable 3D printing adhesive system
Fig.2 Principle of photocuring molding
Fig.3 Forming principle of SLA technology
Fig.4 Forming principle of DLP technology
Fig.5 Forming principle of CLIP technology
技术名称 光固化方式 打印速度 主要优点 主要缺点
SLA 扫描式 性价比高 打印速度慢
DLP 面投影式 较快 分辨率比SLA高 质量受限于
像素尺寸
CLIP 掩膜图像投影式 最快 速度最快 价格高昂;
对光敏树脂要求高
Tab.1 SLA、DLP and CLIP technology comparison
Fig.6 Gun propellant printed by TNO
Fig.7 MPD-gun propellant
Fig.8 Evaluation test of MPD
Fig.9 Preparation and molding test of HTPB propellant blanking system
Fig.10 Forming test renderings of HTPB composite propellant substitution system and burning figure of printed strips
Fig.11 Evaluation test of MPD performed with Gau-8 test gun
Fig.12 MEMS propellant chip compartment and charging principle
Fig.13 Function diagram of rapid prototyping system for manufacturing chemical chip
Fig.14 Main component of photocurable adhesive proposed by Xu di[46]
Fig.15 Architecture diagram of energetic chip rapid prototyping software
Fig.16 Main component of photocurable adhesive system proposed by Zhu jin-zhen[47]
Fig.17 Ink-jet molding system mechanism diagram
Fig.18 Main component of photocurable adhesive system proposed by Wang jian[48]
Fig.19 Main component of energetic ink formula proposed by Xing zong-ren[49]
Fig.20 Simulation, print renderings and ignition diagram
Fig.21 Main component of photocurable adhesive system proposed by Wang jing-long[50]
Fig.22 Refined RDX surface morphology
Fig.23 Main component of photocurable adhesive system proposed by Yao yi-long[51]
[1]   崔庆忠, 刘德润, 徐军培. 高能炸药与装药设计[M]. 北京: 国防工业出版社, 2016.
[2]   朱珠, 雷林, 罗向东, 等 含能材料3D打印技术及应用现状研究[J]. 兵工自动化, 2015, 34 (6): 52- 55
ZHU Zhu, LEI Lin, LUO Xiang-dong, et al Research on application of 3D printing technology of energetic materials[J]. Ordnance Industry Automation, 2015, 34 (6): 52- 55
[3]   丁骁垚, 樊黎霞, 陆星宇 含能材料3D打印机喷嘴参数对挤出速度的影响[J]. 机械设计与制造, 2018, 6: 74- 77
DING Xiao-yao, FAN Li-xia, LU Xing-yu Parameter analysis in extrusion rate of energetic material 3D printer’s nozzle flow[J]. Machinery Design and Manufacture, 2018, 6: 74- 77
doi: 10.3969/j.issn.1001-3997.2018.06.020
[4]   KUO S M, YANG C C, SHIEA J, et al A post-bonding-free fabrication of integrated microfluidic devices for mass spectrometry applications[J]. Sensors and Actuators B: Chemical, 2011, 156 (1): 156- 161
doi: 10.1016/j.snb.2011.04.004
[5]   刘志伟, 张海鹰 面向增材制造的快速建模若干关键技术的探讨[J]. 现代制造技术与装备, 2015, (2): 20- 21
LIU Zhi-wei, ZHANG Hai-ying Discussion of key technologies of rapid modeling of additive manufacturing[J]. Modern Manufacturing Technology and Equipment, 2015, (2): 20- 21
[6]   YAZDANI S H, AKBARZADEH A H, NIKNAM H, et al 3D printed architected polymeric sandwich panels: energy absorption and structural performance[J]. Composite Structures, 2018, 200: 886- 909
doi: 10.1016/j.compstruct.2018.04.002
[7]   KELLY B E, BHATTACHARYA I, HEIDARI H, et al Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363 (6431): 1075- 1079
doi: 10.1126/science.aau7114
[8]   VELU R, VAHEED N, RAMACHANDRAN M K, et al Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 1007- 1025
doi: 10.1007/s00170-019-04623-z
[9]   MA J Environmentally sustainable management of 3D printing network: decision support for 3D printing work allocation[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21: 537- 544
doi: 10.1007/s12541-019-00280-0
[10]   WANG X, TIAN X Y, LIAN Q, et al Fiber traction printing: a 3D printing method of continuous fiber reinforced metal matrix composite[J]. Chinese Journal of Mechanical Engineering, 2020, 33: 31- 42
doi: 10.1186/s10033-020-00447-1
[11]   彭翠枝 含能材料增材制造技术—新兴的精密高效安全制备技术[J]. 含能材料, 2019, 27 (6): 445- 447
PENG Cui-zhi Additive manufacturing technology for energetic materials-emerging precision, efficient and safe manufacturing technology[J]. Chinese Journal of Energetic Materials, 2019, 27 (6): 445- 447
doi: 10.11943/CJEM2019065
[12]   ACOSTA-VÉLEZ G F, LINSLEY C S, CRAIG M C, et al Photocurable bioink for the inkjet 3D pharming of hydrophilic drugs[J]. Bioengineering, 2017, 4: 11- 22
doi: 10.3390/bioengineering4010011
[13]   LOUZAO I, KOCH B, TARESCO V, et al Identification of novel “Inks” for 3D printing using high-throughput screening: bioresorbable photocurable polymers for controlled drug delivery[J]. ACS Applied Materials and Interfaces, 2018, 10 (8): 6841- 6848
doi: 10.1021/acsami.7b15677
[14]   TAORMINA G, SCIANCALEPORE C, MESSORI M, et al 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends[J]. Journal of Applied Biomaterials and Functional Materials, 2018, 16 (3): 151- 160
doi: 10.1177/2280800018764770
[15]   BAGHERI A, ENGEL K E, BAINBRIDGE C W, et al 3D printing of polymeric materials based on photo-RAFT polymerization[J]. Polymer Chemistry, 2020, 11: 641- 647
doi: 10.1039/C9PY01419E
[16]   LEE J S, PARK H S, JUNG H, et al 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells[J]. Additive Manufacturing, 2020, 33: 101136- 101149
doi: 10.1016/j.addma.2020.101136
[17]   赵光华, 刘志涛, 李耀棠 光固化3D打印: 原理、技术、应用及新进展[J]. 机电工程技术, 2020, 49 (8): 1- 6
ZHAO Guang-hua, LIU Zhi-tao, LI Yao-tang Stereolithography: principle, technologies, applications and novel developments[J]. Mechanical and Electrical Engineering Technology, 2020, 49 (8): 1- 6
doi: 10.3969/j.issn.1009-9492.2020.08.001
[18]   TESAVIBUL P, FELZMANN R, GRUBER S, et al Processing of 45S5 bioglass® by lithography-based additive manufacturing[J]. Materials Letters, 2012, 74: 81- 84
doi: 10.1016/j.matlet.2012.01.019
[19]   STASSI S, FANTINO E, CALMO R, et al Polymeric 3D printed functional microcantilevers for biosensing applications[J]. ACS Applied Materials and Interfaces, 2017, 9: 19193- 19201
doi: 10.1021/acsami.7b04030
[20]   刘红波, 林峰, 徐玲 UV固化丙烯酸双酯液晶的合成与性能[J]. 现代涂料与涂装, 2008, 11 (9): 38- 41
LIU Hong-bo, LIN Feng, XU Ling Synthesis and characterization of UV-curable liquid crystal diacrylates[J]. Modern Paint and Finishing, 2008, 11 (9): 38- 41
doi: 10.3969/j.issn.1007-9548.2008.09.012
[21]   BERTANA V, SCORDO G, PARMEGGIANI M, et al Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin[J]. Scientific Reports, 2020, 10: 13335- 13347
doi: 10.1038/s41598-020-70365-8
[22]   李东方, 陈继民, 袁艳萍, 等 光固化快速成型技术的进展及应用[J]. 北京工业大学学报, 2015, 41 (12): 1769- 1774
LI Dong-fang, CHEN Ji-min, YUAN Yan-ping, et al Development and application of stereo lithography apparatus[J]. Journal of Beijing University of Technology, 2015, 41 (12): 1769- 1774
doi: 10.11936/bjutxb2015070084
[23]   吴懋亮, 诸文俊, 李涤尘, 等 光固化成型中的变形分析[J]. 西安交通大学学报, 1999, 33 (9): 90- 93
WU Mao-liang, ZHU Wen-jun, LI Di-chen, et al Analysis of care deformation in stereolithography[J]. Journal of Xi’an Jiaotong University, 1999, 33 (9): 90- 93
doi: 10.3321/j.issn:0253-987X.1999.09.022
[24]   ZHAO Z, WU J T, MU X M, et al Desolvation induced origami of photocurable polymers by digit light processing[J]. Macromolecular Rapid Communications, 2017, 38: 1600625
doi: 10.1002/marc.201600625
[25]   TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al Continuous liquid interface production of 3D objects[J]. Science, 2015, 347 (6228): 1349- 1352
doi: 10.1126/science.aaa2397
[26]   戴京涛, 赵培仲, 魏华凯, 等 光固化复合材料的研究进展[J]. 化工新型材料, 2016, 44 (3): 15- 16
DAI Jing-tao, ZHAO Pei-zhong, WEI Hua-kai, et al Research progress of UV curable composite materials[J]. New Chemical Materials, 2016, 44 (3): 15- 16
[27]   HUANG B, HUA R, XUE Z H, et al Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties[J]. Carbohydrate Polymers, 2020, 231: 115736- 115744
doi: 10.1016/j.carbpol.2019.115736
[28]   CAUDILL C, PERRY J, TIAN S, et al Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery[J]. Journal of Controlled Release, 2018, 284: 122- 132
doi: 10.1016/j.jconrel.2018.05.042
[29]   PROVCHY Z, PALAZOTTO A, FLATER P. Additively manufactured perforators[C]// 58th AIAA/ASCE/ASC Structures, Structural Dynamics, and Materials Conference. Long Beach: AIAA, 2017: 1303.
[30]   Department of Defence. Rapid development of weapon payloads via additive manufacturing: DTRAI6A-001[R]. Montreal: Concordia University, 2016.
[31]   JACKSON B. Australian researchers launch explosive $2 million 3D printer materials partnership [EB/OL]. (2018-03-05) [2019-04-26]. http://3Dprintingindustry.com/news/.2018.3.
[32]   郑斌, 沈卫, 陈永新, 等. 世界火炸药技术发展报告[M]. 北京: 中国兵器第二一〇研究所, 2019: 215.
[33]   张金勇. 异形结构传爆药装药工艺研究[D]. 太原: 中北大学, 2006.
ZHANG Jin-yong. Study on irregular booster pellet charge process[D]. Taiyuan: North University of China, 2006.
[34]   VAN D C, STRAATHOF M, VAN L J. Developments in additive manufacturing of energetic materials at TNO[C]// 30th International Symposium on Ballistics. Long Beach: DEStech, 2017: 862-875.
[35]   JOOST V L, CHRIS V D, ARJAN D O. 3D printing of gun propellants[C]// Proceedings of the 43rd International Pyrotechnics Society Seminar. Colorado: Fort Collins, 2018: 129-141.
[36]   胡睿, 杨伟涛, 姜再兴, 等 一种基于光聚合固化成型发射药3D打印方法[J]. 火炸药学报, 2020, 43 (4): 368- 371
HU Rui, YANG Wei-tao, JIANG Zai-xing, et al 3D printing method gun propellants based on vat photopolymerization[J]. Chinese Journal of Energetic Materials, 2020, 43 (4): 368- 371
[37]   YANG Wei-tao, HU Rui, ZHENG Lin, et al Fabrication and investigation of 3D-printed gun propellants[J]. Materials and Design, 2020, 192: 108761- 18769
doi: 10.1016/j.matdes.2020.108761
[38]   胡睿, 杨伟涛 含能光固化3D打印发射药技术取得突破[J]. 火炸药学报, 2020, 43 (5): 465- 476
HU Rui, YANG Wei-tao A breakthrough has been made in the technology of energetic photocurable 3D printing propellant[J]. Chinese Journal of Energetic Materials, 2020, 43 (5): 465- 476
doi: 10.14077/j.issn.
[39]   QUINTANILLA A L. Fundamentals of particulate-filled polymer composite fabrication via continuous liquid interface production (CLIP)[D]. Raleigh: North Carolina State University, 2017.
[40]   张亮, 刘晶, 张哲, 等 增材制造技术以及在火炸药研究中的现状与发展[J]. 爆破器材, 2016, 45 (4): 1- 8
ZHANG Liang, LIU Jing, ZHANG Zhe, et al Additive manufacture technology and its research status and development in propellant and explosive industry[J]. Explosive Materials, 2016, 45 (4): 1- 8
doi: 10.3969/j.issn.1001-8352.2016.04.001
[41]   徐林峰. 均匀液滴喷射微制造技术基础研究[D]. 西安: 西北工业大学, 2005.
XU Lin-feng. Foundational research on uniform droplets spraying micro-fabrication technology[D]. Xi ’an: Northwestern Polytechnical University, 2005.
[42]   MCCLAIN M S, GUNDUZ I E, SON S F Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings[J]. Proceedings of the Combustion Institute, 2019, 37 (3): 3135- 3142
doi: 10.1016/j.proci.2018.05.052
[43]   STRAATHOF M H, VAN DRIEL C, LINGEN J N, et al Development of propellant compositions for vat photopolymerization additive manufacturing[J]. Propellants Explosives, Pyrotechnics, 2020, 45: 36- 52
doi: 10.1002/prep.201900176
[44]   VAN DRIEL C, KOBES J, BROEKHUIS R. Characterisation of porous single base propellant[C]// 34th International Annual Conference of ICT. Karlsruhe: Elsevier, 2003: 24-27.
[45]   ZUNINO J, SCHMIDT D Inkjet printed devices for armament applications[J]. Nanotechnology, 2010, 2: 542- 545
[46]   许迪. 化学芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2003.
XU Di. The research of rapid prototyping technology of chemical chip[D]. Nanjing: Nanjing University of Science and Technology, 2003.
[47]   朱锦珍. 含能芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2005.
ZHU Jin-zhen. The research of rapid prototyping technology of energetic chip[D]. Nanjing: Nanjing University of Science and Technology, 2005.
[48]   王建. 化学芯片的喷墨快速成型技术研究[D]. 南京: 南京理工大学, 2006.
WANG Jian. The research of inject rapid prototyping technology of chemical chip[D]. Nanjing: Nanjing University of Science and Technology, 2006.
[49]   邢宗仁. 含能材料三维打印快速成形技术研究[D]. 南京: 南京理工大学, 2012.
XING Zong-ren. Research of three-dimensional printing for energetic materials[D]. Nanjing: Nanjing University of Science and Technology, 2012.
[50]   王景龙. 3DP炸药油墨配方设计及制备技术[D]. 太原: 中北大学, 2015.
WANG Jing-long. 3DP explosive ink formulation and preparation technology[D]. Taiyuan: North University of China, 2015.
[51]   姚艺龙, 吴立志, 唐乐, 等 纳米CL-20炸药含能墨水的直写规律[J]. 火炸药学报, 2016, 39 (1): 39- 41
YAO Yi-long, WU Li-zhi, TANG Le, et al Direct writing rule of nano of CL-20 explosive energetic ink[J]. Chinese Journal of Explosives and Propellans, 2016, 39 (1): 39- 41
[1] Xiao-yu YING,Xiao-ying QIN,Jia-hui CHEN,Jing GAO,Zi-qiao LIU. Layout generation method of high-rise residential buildings based on AI in view of wind environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2186-2193.
[2] Jia-hao LIAO,Zhi-wen YU,Yi-meng LIU,Bin GUO. Design and implementation of mobile crowdsensing platform[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1915-1922.
[3] Jia-shuang FAN,Sui-huai YU,Jian-jie CHU,Hui WANG,Chen CHEN,Wen-zhe CUN,Tian CHEN,Jia-yan GUO. Optimal decision-making method of design scheme in cloud service mode[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 143-151.
[4] Shi-wei LI,Yong-qing YANG,Qian-hui PU,Bo SUN. Nonlinear creep effect analysis for short concrete-filled circular steel tubular columns under axial compression[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1083-1091.
[5] DAI Feng, ZHAI Xiang, SHI Guo-qiang, DU Chen-yong. Modeling ontological knowledge network for aerospace equipment development[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2023-2034.
[6] HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, ZHANG Xiao-dong. Application of degradation stiffness model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 721-726.
[7] LIU Chang-dian, SUN Hong-yue, KANG Jian-wei, Du Li-li. Experimental investigation of seepage barrier effect by air-inflation in soil[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 236-241.
[8] NI Yi-hua, SONG Fang-fang, GUO Hai. Customized development for wind turbine blade design and
aerodynamic performance simulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 315-320.
[9] ZHANG Wei, PAN Xiao-hong, WANG Zheng-xiao, TIAN Jing-hong,WU Peng-cheng. Manufacturing services development strategy based on
information entropy immune optimization
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1908-1912.
[10] GUO Xing-Meng, GUO Tian-Chen, ZHANG San-Yuan. Middleware framework based on management information ontology and request functional components[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 844-848.
[11] LIU Jiang, CHEN Ji-Xi, GU Xin-Jian, et al. Knowledge network guided by technology roadmap[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(12): 2218-2224.
[12] CHEN Jian-Hu, HUANG Sha, HUA Chen. Land use assessment model of upland sustainable development and its application: a case study of new industrial town in Kaihua, Zhejiang Province[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(11): 2100-2106.