Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (6): 1159-1167    DOI: 10.3785/j.issn.1008-973X.2021.06.017
    
Simplification method and application of thermal model of forced air cooling system for power electronic device
Hong-yi LIN(),Xiao GUO,Liang WU,Guo-zhu CHEN*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1256KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The accurate thermal model of the typical forced air cooling system was proposed based on the theory of heat conduction, fluid heat transfer and fluid mechanics in order to improve the design efficiency of thermal design. A simplified thermal model was proposed based on the accurate thermal model. The forced air cooling system can be quickly and accurately designed by the simplified thermal model. The simplified thermal model with the advantages of small calculation amount and high design efficiency was applied to the thermal design of 380 V/50 kVar SiC-MOSFET static var generator (SVG). The surface temperature rise error of the SVG heatsink designed by the simplified model was 4.1 ℃ (full load condition), which meeted the requirements of engineering design.



Key wordsthermal design      simplified thermal model      forced air cooling      static var generator (SVG)     
Received: 13 July 2020      Published: 30 July 2021
CLC:  TM 762  
  O 551  
Fund:  国家自然科学基金资助项目(51777186)
Corresponding Authors: Guo-zhu CHEN     E-mail: lhy2007.11@qq.com;gzchen@zju.edu.cn
Cite this article:

Hong-yi LIN,Xiao GUO,Liang WU,Guo-zhu CHEN. Simplification method and application of thermal model of forced air cooling system for power electronic device. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1159-1167.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.06.017     OR     https://www.zjujournals.com/eng/Y2021/V55/I6/1159


电力电子装置强风散热模型简化方法及应用

为了提高热设计的设计效率,基于热传导、流体换热、流体力学理论,对典型强迫风冷散热系统进行精确建模,对精确模型进行简化方法的研究. 使用该简化热模型,可以对强迫风冷散热系统进行快速、准确的设计. 采用该简化热模型设计的380 V/50 kVar SiC-MOSFET静止无功补偿器(SVG)的工业化样机,散热器表面温升误差为4.1 ℃(满载条件),满足工程化设计的要求.


关键词: 散热器设计,  简化热模型,  强迫风冷,  静止无功补偿器(SVG) 
Fig.1 Typical structural of forced air cooling system and its Foster thermal resistance network
Fig.2 Process of thermal resistance solution
Fig.3 Thermal resistance model of heat sink duct unit
Fig.4 Relationship of fin length of heat sink c and thermal resistance Rth,h-a
Fig.5 Relationship of fin spacing factor si and length L and thermal resistance Rth, h-a
Fig.6 Structure of SVG system
符号 参数说明 参数值
Us 电网线电压 380 V
f0 电网频率 50 Hz
Vdc SVG直流侧电压 780 V
Sc SVG额定功率 50 kVar
Ixrms 每只MOSFET输出电流有效值 25 A
fsw 开关频率 50 kHz
Esw,const 开关损耗系数(tc=100 ℃) 17×10?6 J
Esw,k 开关损耗系数(tc=100 ℃) 140×10?6 J
Qrr 二极管反向充电电荷(tc=100 ℃) 230 nC
Ron 导通电阻(tc=100 ℃) 60 mΩ
Tab.1 Circuit parameters of SVG
Fig.7 Steady-state simulated temperature field of cooling system (ta = 25 ℃)
参数 仿真值 实验值
Q/W 768 787
Δtc/℃ 38.2 43.1
Δth/℃ 21.1 21.9
Rth,h-a/(K·W?1) 0.027 5 0.027 8
${\sigma _{{R_{{\rm{th}}}}}} $(精确热模型) 20.7% 19.4%
Δth,err/℃ 4.9 4.7
${\sigma _{{R_{{\rm{th}}}}}} $(简化热模型) 18.8% 17.2%
Δth,err/℃ 4.4 4.1
Tab.2 Simulation and test results of cooling system with SVG full load
Fig.8 Test platform of cooling system
Fig.9 Output current of SVG with full load
[1]   LALOYA E, LUCÍA Ó, SARNAGO H, et al Heat management in power converters: from state of the art to future ultrahigh efficiency systems[J]. IEEE Transactions on Power Electronics, 2016, 31 (11): 7896- 7908
doi: 10.1109/TPEL.2015.2513433
[2]   盛况, 郭清, 张军明, 等 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32 (30): 1- 7
SHENG Kuang, GUO Qing, ZHANG Jun-ming, et al Development and prospect of sic power devices in power grid[J]. Proceedings of the CSEE, 2012, 32 (30): 1- 7
[3]   张栋, 范涛, 温旭辉, 等 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39 (19): 5624- 5634
ZHANG Dong, FAN Tao, WEN Xu-hui, et al Research on high power density sic motor drive controller[J]. Proceedings of the CSEE, 2019, 39 (19): 5624- 5634
[4]   胡建辉, 李锦庚, 邹继斌, 等 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24 (3): 159- 163
HU Jian-hui, LI Jin-geng, ZOU Ji-bin, et al Losses calculation of igbt module and heat dissipation system design of inverters[J]. Transactions of China Electrotechnical Society, 2009, 24 (3): 159- 163
doi: 10.3321/j.issn:1000-6753.2009.03.027
[5]   丁杰, 张平 电机控制器用IGBT风冷散热器的热仿真与实验[J]. 电源学报, 2015, 13 (2): 38- 44
DING Jie, ZHANG Ping Thermal analysis and experimental of igbt air-cooled radiator for motor controller[J]. Journal of Power Supply, 2015, 13 (2): 38- 44
[6]   何文志, 丘东元, 肖文勋, 等 高频大功率开关电源结计[J]. 电工技术学报, 2013, 28 (2): 185- 191
HE Wen-zhi, QIU Dong-yuan, XIAO Wen-xun, et al Thermal design of high frequency high powerswitched-mode power supply[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 185- 191
doi: 10.3969/j.issn.1000-6753.2013.02.025
[7]   刘超, 贾晓宇, 胡长生, 等 电动汽车SiC MOSFET风冷逆变器的散热器设计[J]. 电源学报, 2018, 16 (3): 151- 157
LIU Chao, JIA Xiao-yu, HU Chang-sheng, et al Design of heat sink for electric vehicle SiC MOSFET air-cooled inverter[J]. Journal of Power Suply, 2018, 16 (3): 151- 157
[8]   DROFENIK U, STUPAR A, KOLAR J W Analysis of theoretical limits of forced-air cooling using advanced composite materials with high thermal conductivities[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2011, 4 (11): 528- 535
[9]   GAMMETER C, KRISMER F, KOLAR J W Weight optimization of a cooling system composed of fan and extruded-fin heat sink[J]. IEEE Transactions on Industry Applications, 2015, 51 (a): 509- 520
[10]   杨俊, 查鲲鹏, 高冲, 等 直流换流阀晶闸管热阻抗端口特性分析与建模[J]. 中国电机工程学报, 2016, 36 (1): 196- 204
YANG Jun, ZHA Kun-peng, GAO Chong, et al Study on external characteristics and modelling for thermal impedance of thyrisor in HVDC converter valve[J]. Proceedings of the CSEE, 2016, 36 (1): 196- 204
[11]   MUZYCHKA Y S, YOVANOVICH M M Laminar forced convection heat transfer in the combined entry region of non-circular ducts[J]. Journal of Heat Transfer, 2004, 126 (1): 20- 24
[12]   MUZYCHKA Y S, YOVANOVICH M M Pressure drop in laminar developing flow in noncircular ducts: a scaling and modeling approach[J]. Journal of Fluids Engineering, 2009, 131 (11): 105- 111
[13]   尤尼斯·夏班尼. 传热学-电力电子器件热管理[M]. 北京: 机械工业出版社, 2013.
[14]   BAEHR H, STEPHAN K. Heat transfer [M]. Berlin: Springer, 1998.
[15]   ZWEBEN C. Advanced composites and other advanced materials for electronic packaging thermal management[C]// International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. Braselton: IEEE, 2001: 360-365.
[16]   KOLAR J W, ZACH F C, CASANELLAS F Losses in PWM inverters using IGBTs[J]. IEE Proceedings, 1995, 142 (4): 285- 288
[17]   白保东, 陈德志, 王鑫博 逆变器IGBT损耗计算及冷却装置设计[J]. 电工技术学报, 2013, 28 (8): 97- 106
BAI Bao-dong, CHEN De-zhi, WANG Xin-bo Loss calculation of inverter IGBT and design of cooling device[J]. Transactions of China Electrotechnical Society, 2013, 28 (8): 97- 106
doi: 10.3969/j.issn.1000-6753.2013.08.014
[1] DENG Xiao-lei, FU Jian-zhong, HE Yong, CHEN Zi-chen. Multi-field coupling thermal characteristics analysis for spindle system of precision CNC machine tool[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1863-1870.