|
|
|
| Review of SMART subsea network systems |
Yiwen DIAO1( ),Rendong XU1,2,3,Guoxiang XU3,Yucheng FAN3,Wei YIN3,Haocai HUANG1,3,*( ) |
1. Ocean College, Zhejiang University, Zhoushan 316021, China 2. Jiangsu Marine Information Technology and Equipment Innovation Center, Suzhou 215223, China 3. Jiangsu Hengtong Marine Cable Systems Limited Company, Changshu 215537, China |
|
|
|
Abstract Existing ocean observation methods face significant limitations. The science monitoring and reliable telecommunications (SMART) subsea network integrates key sensors, including temperature, pressure, and acceleration, into submarine communication cables to establish a global observation network that combines telecommunications with scientific monitoring. Long-term in-situ observation of deep-sea environmental variables is enabled globally at a minimal incremental cost, while marine natural hazard early warning capabilities are significantly enhanced, demonstrating transformative technological potential and broad application prospects. The technical principles, key equipment selection, and project implementation strategies of the SMART cable were introduced, focusing on its applications across various fields. Additionally, the sustainability factors were evaluated, and strategic recommendations for future development were provided.
|
|
Received: 04 March 2025
Published: 03 February 2026
|
|
|
| Fund: 2024年度长三角科技创新共同体联合攻关计划项目(2024CSJGG2600). |
|
Corresponding Authors:
Haocai HUANG
E-mail: yiwendiao@zju.edu.cn;hchuang@zju.edu.cn
|
通感一体海洋网络技术综述
现有的海洋观测手段存在诸多局限. 通感一体海洋网络技术通过在海底通信光缆中集成温度、压力、加速度等核心传感器,构建兼具通信与科学监测功能的全球观测网络,以极低的增量成本实现对深海环境变量的全球长期原位观测,显著提升海洋自然灾害预警能力,展现出变革性的科技潜力和广阔的应用前景. 为此,介绍通感一体网络技术的原理、关键设备选型及项目实施方案,聚焦该技术在不同领域的应用,探讨可持续发展因素,为未来发展提供指导性建议.
关键词:
通感一体海洋网络技术,
海底通信光缆,
深海观测,
气候变化,
海洋自然灾害,
地震海啸预警
|
|
| [1] |
Panel on Climate Variability on Decade-to-Century Time Scales, Board on Atmospheric Sciences and Climate, Commission on Geosciences, Environment, and Resources, et al. Decade-to-century-scale climate variability and change: a science strategy [M]. Washington, D. C. : National Academies Press, 1998.
|
|
|
| [2] |
Ocean Studies Board, Commission on Geosciences, Environment, and Resources, National Research Council. Global ocean science: toward an integrated approach [M]. Washington, D. C. : National Academies Press, 2000.
|
|
|
| [3] |
GATTUSO J P, MAGNAN A, BILLÉ R, et al Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349 (6243): aac4722
doi: 10.1126/science.aac4722
|
|
|
| [4] |
ZEEBE R E, ZACHOS J C Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371 (2001): 20120006
|
|
|
| [5] |
RICKE K L, CALDEIRA K Natural climate variability and future climate policy[J]. Nature Climate Change, 2014, 4 (5): 333- 338
doi: 10.1038/nclimate2186
|
|
|
| [6] |
PURKEY S G, JOHNSON G C Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010, 23 (23): 6336- 6351
doi: 10.1175/2010JCLI3682.1
|
|
|
| [7] |
SADAI S, CONDRON A, DECONTO R, et al Future climate response to Antarctic ice sheet melt caused by anthropogenic warming[J]. Science Advances, 2020, 6 (39): eaaz1169
doi: 10.1126/sciadv.aaz1169
|
|
|
| [8] |
WIGLEY T M L, RAPER S C B Thermal expansion of sea water associated with global warming[J]. Nature, 1987, 330 (6144): 127- 131
doi: 10.1038/330127a0
|
|
|
| [9] |
PAOLO F S, FRICKER H A, PADMAN L Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348 (6232): 327- 331
doi: 10.1126/science.aaa0940
|
|
|
| [10] |
LI L, SWITZER A D, WANG Y, et al A modest 0.5-m rise in sea level will double the tsunami hazard in Macau[J]. Science Advances, 2018, 4 (8): eaat1180
doi: 10.1126/sciadv.aat1180
|
|
|
| [11] |
FUKAO Y, SANDANBATA O, SUGIOKA H, et al Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan[J]. Science Advances, 2018, 4 (4): eaao0219
doi: 10.1126/sciadv.aao0219
|
|
|
| [12] |
汪品先 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28 (5): 517- 520 WANG Pinxian Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28 (5): 517- 520
|
|
|
| [13] |
MCFARLANE J R. Tethered and untethered vehicles: the future is in the past [C]// Proceedings of the OCEANS 2008. Quebec City: IEEE, 2009: 1–4.
|
|
|
| [14] |
陈鹰, 瞿逢重, 宋宏, 等. 海洋技术教程 [M]. 杭州: 浙江大学出版社, 2012.
|
|
|
| [15] |
FANG C, SONG K, YAN Z, et al Monitoring phycocyanin in global inland waters by remote sensing: progress and future developments[J]. Water Research, 2025, 275: 123176
doi: 10.1016/j.watres.2025.123176
|
|
|
| [16] |
INSTITUTION W H O, JAYNE S, ROEMMICH D, et al The Argo program: present and future[J]. Oceanography, 2017, 30 (2): 18- 28
doi: 10.5670/oceanog.2017.213
|
|
|
| [17] |
刘放. 摘箬山岛智能海洋观测网信息系统的设计与实现 [D]. 杭州: 浙江大学, 2016: 1–59. LIU Fang. The design and implementation of Z2ERO smart ocean observatory information system [D]. Hangzhou: Zhejiang University, 2016: 1–59.
|
|
|
| [18] |
BARNES C R, BEST M M R, JOHNSON F R, et al Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: perspectives from NEPTUNE Canada[J]. IEEE Journal of Oceanic Engineering, 2013, 38 (1): 144- 157
doi: 10.1109/JOE.2012.2212751
|
|
|
| [19] |
许惠平, 张艳伟, 徐昌伟, 等 东海海底观测小衢山试验站[J]. 科学通报, 2011, 56 (22): 1839- 1845 XU Huiping, ZHANG Yanwei, XU Changwei, et al Coastal seafloor observatory at Xiaoqushan in the East China Sea[J]. Chinese Science Bulletin, 2011, 56 (22): 1839- 1845
doi: 10.1360/csb2011-56-22-1839
|
|
|
| [20] |
PETITT R A, HARRIS D W, WOODING B, et al The Hawaii-2 observatory[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (2): 245- 253
doi: 10.1109/JOE.2002.1002479
|
|
|
| [21] |
FAVALI P, BERANZOLI L, DE SANTIS A. Seafloor observatories: a new vision of the Earth from the Abyss [M]. Berlin: Springer, 2015: 676.
|
|
|
| [22] |
TURNER R A, SMITH K S Transformer inrush currents[J]. IEEE Industry Applications Magazine, 2010, 16 (5): 14- 19
doi: 10.1109/MIAS.2010.937440
|
|
|
| [23] |
陈鹰, 杨灿军, 陶春辉, 等. 海底观测系统 [M]. 北京: 海洋出版社, 2006.
|
|
|
| [24] |
LEVIN L A, LE BRIS N The deep ocean under climate change[J]. Science, 2015, 350 (6262): 766- 768
doi: 10.1126/science.aad0126
|
|
|
| [25] |
MARJO V, IAN C, ELVA E B, et al. Global open oceans and deep seabed (GOODS): biogeographic classification [S]. [S.l.]: UNESCO, 2009.
|
|
|
| [26] |
YOU Y Harnessing telecoms cables for science[J]. Nature, 2010, 466 (7307): 690- 691
doi: 10.1038/466690a
|
|
|
| [27] |
CHESNOY J, ANTONA J C. Undersea fiber communication systems [M]. Cambridge: [s.n.], 2015.
|
|
|
| [28] |
叶胤, 王超, 莫仁芸 海底光缆通信系统技术发展分析[J]. 广东通信技术, 2021, 41 (1): 19- 23 YE Yin, WANG Chao, MO Renyun Technical development analysis of submarine optical cable communication system[J]. Guangdong Communication Technology, 2021, 41 (1): 19- 23
|
|
|
| [29] |
KASAHARA J, UTADA H, SATO T, et al Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program[J]. Physics of the Earth and Planetary Interiors, 1998, 108 (2): 113- 127
doi: 10.1016/S0031-9201(98)00090-9
|
|
|
| [30] |
HOWE B. Ocean observing using SMART subsea telecommunications cable systems [C]// AGU Fall Meeting 2015. San Francisco: AGU, 2015.
|
|
|
| [31] |
HOWE B M, ARBIC B K, AUCAN J, et al SMART cables for observing the global ocean: science and implementation[J]. Frontiers in Marine Science, 2019, 6: 424
doi: 10.3389/fmars.2019.00424
|
|
|
| [32] |
TILMANN F, HOWE B, BUTLER R, et al. Proposal for using commercial submarine telecommunications cables for monitoring earthquakes and tsunamis-the SMART cable concept [C]// EGU General Assembly 2017 Conference. Vienna: EGU, 2017: 14587.
|
|
|
| [33] |
SNOWDEN D, TSONTOS V M, HANDEGARD N O, et al Data interoperability between elements of the global ocean observing system[J]. Frontiers in Marine Science, 2019, 6: 442
doi: 10.3389/fmars.2019.00442
|
|
|
| [34] |
TANHUA T, APPELTANS W, BAX N, et al. GOOS, FOO and governance - assessments and strategies [J]. Frontiers in Marine Science, 2019: 1–35.
|
|
|
| [35] |
ROWE C, HOWE B, BEGNAUD M, et al. Science monitoring and reliable telecommunications (SMART) cables: the future of global undersea observing [C]// Proceedings of the IEEE Photonics Society Summer Topicals Meeting Series. Bridgetown: IEEE, 2024: 1–2.
|
|
|
| [36] |
MULLER-KARGER F E, MILOSLAVICH P, BAX N J, et al Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks[J]. Frontiers in Marine Science, 2018, 5: 211
doi: 10.3389/fmars.2018.00211
|
|
|
| [37] |
The Global Ocean Observing System. Essential ocean variables [EB/OL]. [2025–01–26]. https://goosocean.org/what-we-do/framework/essential-ocean-variables/.
|
|
|
| [38] |
RENNINGER-ROJAS K, TROSSMAN D, HOWE B, et al. Assessing the potential of SMART subsea cables for monitoring essential ocean variables [C]// 2024 Ocean Sciences Meeting. New Orleans: AGU, 2024.
|
|
|
| [39] |
JOHNSON G C Quantifying Antarctic bottom water and North Atlantic deep water volumes[J]. Journal of Geophysical Research: Oceans, 2008, 113 (C5): 2007JC004477
doi: 10.1029/2007JC004477
|
|
|
| [40] |
SMEED D A, JOSEY S A, BEAULIEU C, et al The North Atlantic Ocean is in a state of reduced overturning[J]. Geophysical Research Letters, 2018, 45 (3): 1527- 1533
doi: 10.1002/2017GL076350
|
|
|
| [41] |
JOHNSON G C, LYMAN J M, PURKEY S G Informing deep Argo array design using Argo and full-depth hydrographic section data[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32 (11): 2187- 2198
doi: 10.1175/JTECH-D-15-0139.1
|
|
|
| [42] |
MCCARTHY G D, SMEED D A, JOHNS W E, et al Measuring the Atlantic meridional overturning circulation at 26°N[J]. Progress in Oceanography, 2015, 130: 91- 111
doi: 10.1016/j.pocean.2014.10.006
|
|
|
| [43] |
SUSAN LOZIER M, BACON S, BOWER A S, et al Overturning in the subpolar north Atlantic program: a new international ocean observing system[J]. Bulletin of the American Meteorological Society, 2017, 98 (4): 737- 752
doi: 10.1175/BAMS-D-16-0057.1
|
|
|
| [44] |
MEINEN C S, GARZOLI S L, PEREZ R C, et al Characteristics and causes of Deep Western Boundary Current transport variability at 34.5°S during 2009–2014[J]. Ocean Science, 2017, 13 (1): 175- 194
doi: 10.5194/os-13-175-2017
|
|
|
| [45] |
TALLEY L D, FEELY R A, SLOYAN B M, et al Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography[J]. Annual Review of Marine Science, 2016, 8: 185- 215
doi: 10.1146/annurev-marine-052915-100829
|
|
|
| [46] |
ELIPOT S, FRAJKA-WILLIAMS E, HUGHES C W, et al The observed North Atlantic meridional overturning circulation: its meridional coherence and ocean bottom pressure[J]. Journal of Physical Oceanography, 2014, 44 (2): 517- 537
doi: 10.1175/JPO-D-13-026.1
|
|
|
| [47] |
HUGHES C W, ELIPOT S, MORALES MAQUEDA M Á, et al Test of a method for monitoring the geostrophic meridional overturning circulation using only boundary measurements[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30 (4): 789- 809
doi: 10.1175/JTECH-D-12-00149.1
|
|
|
| [48] |
HUGHES C W, WILLIAMS J, BLAKER A, et al A window on the deep ocean: the special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation[J]. Progress in Oceanography, 2018, 161: 19- 46
doi: 10.1016/j.pocean.2018.01.011
|
|
|
| [49] |
MAKOWSKI J K, CHAMBERS D P, BONIN J A Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120 (6): 4245- 4259
doi: 10.1002/2014JC010575
|
|
|
| [50] |
CHAMBERS D P, SCHRÖTER J Measuring ocean mass variability from satellite gravimetry[J]. Journal of Geodynamics, 2011, 52 (5): 333- 343
doi: 10.1016/j.jog.2011.04.004
|
|
|
| [51] |
TAPLEY B D, BETTADPUR S, WATKINS M, et al The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31 (9): 2004GL019920
doi: 10.1029/2004GL019920
|
|
|
| [52] |
FLECHTNER F, NEUMAYER K H, DAHLE C, et al. What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? [M]// CAZENAVE A, CHAMPOLLION N, BENVENISTE J, et al. Remote sensing and water resources. [S.l.]: Springer, 2016: 263–280.
|
|
|
| [53] |
MÜLLER M, ARBIC B K, MITROVICA J X Secular trends in ocean tides: observations and model results[J]. Journal of Geophysical Research: Oceans, 2011, 116 (C5): C05013
|
|
|
| [54] |
RAY R D Secular changes of the M2 tide in the Gulf of Maine[J]. Continental Shelf Research, 2006, 26 (3): 422- 427
doi: 10.1016/j.csr.2005.12.005
|
|
|
| [55] |
RAY R D Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118 (9): 4570- 4584
doi: 10.1002/jgrc.20336
|
|
|
| [56] |
MÜLLER M, CHERNIAWSKY J Y, FOREMAN M G G, et al Seasonal variation of the M2 tide[J]. Ocean Dynamics, 2014, 64 (2): 159- 177
doi: 10.1007/s10236-013-0679-0
|
|
|
| [57] |
BERNARD E, TITOV V Evolution of tsunami warning systems and products[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373 (2053): 20140371
doi: 10.1098/rsta.2014.0371
|
|
|
| [58] |
SONG Y T, FUKUMORI I, SHUM C K, et al Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean[J]. Geophysical Research Letters, 2012, 39 (5): L05606
|
|
|
| [59] |
SALAREE A, HOWE B M, HUANG Y, et al A numerical study of SMART cables potential in marine hazard early warning for the Sumatra and Java regions[J]. Pure and Applied Geophysics, 2023, 180 (5): 1717- 1749
doi: 10.1007/s00024-022-03004-0
|
|
|
| [60] |
ANGOVE M, ARCAS D, BAILEY R, et al Ocean observations required to minimize uncertainty in global tsunami forecasts, warnings, and emergency response[J]. Frontiers in Marine Science, 2019, 6: 350
doi: 10.3389/fmars.2019.00350
|
|
|
| [61] |
PAROS J, BERNARD E, DELANEY J, et al. Breakthrough underwater technology holds promise for improved local tsunami warnings [C]// Proceedings of the IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo: IEEE, 2011: 1–9.
|
|
|
| [62] |
KANAMORI H Mechanism of tsunami earthquakes[J]. Physics of the Earth and Planetary Interiors, 1972, 6 (5): 346- 359
doi: 10.1016/0031-9201(72)90058-1
|
|
|
| [63] |
TAPPIN D R, GRILLI S T, HARRIS J C, et al Did a submarine landslide contribute to the 2011 Tohoku tsunami?[J]. Marine Geology, 2014, 357: 344- 361
doi: 10.1016/j.margeo.2014.09.043
|
|
|
| [64] |
AMMON C J, JI C, THIO H K, et al Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308 (5725): 1133- 1139
doi: 10.1126/science.1112260
|
|
|
| [65] |
KANAMORI H, RIVERA L Source inversion of W phase: speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175 (1): 222- 238
doi: 10.1111/j.1365-246X.2008.03887.x
|
|
|
| [66] |
DUPUTEL Z, RIVERA L, KANAMORI H, et al W phase source inversion for moderate to large earthquakes (1990–2010)[J]. Geophysical Journal International, 2012, 189 (2): 1125- 1147
doi: 10.1111/j.1365-246X.2012.05419.x
|
|
|
| [67] |
WEINSTEIN S, BECKER N, HOWE B, et al. Can SMART cables—a real-time, deep-ocean sensor network—improve tsunami-hazard assessment? Yes! [C]// AGU Fall Meeting 2019. San Francisco: AGU, 2019: NH33A-07.
|
|
|
| [68] |
RANASINGHE N, ROWE C, SYRACUSE E, et al Enhanced global seismic resolution using transoceanic SMART cables[J]. Seismological Research Letters, 2018, 89 (1): 77- 85
doi: 10.1785/0220170068
|
|
|
| [69] |
BEGNAUD M, ROWE C, CONLEY A, et al. Enhancing Global 3D seismic P-wave models by addition of OBS and SMART cables sensors [C]// AGU Fall Meeting 2023. San Francisco: AGU, 2023: S52A-08.
|
|
|
| [70] |
KENNETT B L N, ENGDAHL E R, BULAND R Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122 (1): 108- 124
doi: 10.1111/j.1365-246X.1995.tb03540.x
|
|
|
| [71] |
AUCAN J, HOWE B. SMART cables sensing the pulse of the planet [C]// 2018 Ocean Sciences Meeting. Portland: AGU, 2018.
|
|
|
| [72] |
ITU. JTF funding study [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/JTF%20Report%20Green%20Cable%20Funding%20Study.pdf.
|
|
|
| [73] |
ITU. JTF functional requirements [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/Functional-requirements.
|
|
|
| [74] |
ITU. JTF wet demonstrator [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/Wet-demonstrator.
|
|
|
| [75] |
ITU. JTF website [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Pages/default.aspx.
|
|
|
| [76] |
HOWE B M, PANAYOTOU K. SMART submarine telecommunication cables to monitor global change and tsunamis in the global ocean [C]// 4th Underwater Acoustics Conference and Exhibition. Skiathos Island: [s.n.], 2017: 769–776.
|
|
|
| [77] |
MA B B, NYSTUEN J A, LIEN R C Prediction of underwater sound levels from rain and wind[J]. the Journal of the Acoustical Society of America, 2005, 117 (6): 3555- 3565
doi: 10.1121/1.1910283
|
|
|
| [78] |
YANG J, RISER S, NYSTUEN J, et al Regional rainfall measurements using the passive aquatic listener during the SPURS field campaign[J]. Oceanography, 2015, 28 (1): 124- 133
doi: 10.5670/oceanog.2015.10
|
|
|
| [79] |
MELLINGER D, STAFFORD K, MOORE S, et al An overview of fixed passive acoustic observation methods for cetaceans[J]. Oceanography, 2007, 20 (4): 36- 45
doi: 10.5670/oceanog.2007.03
|
|
|
| [80] |
GONZALEZ-HERRAEZ M, FERNANDEZ-RUIZ M R, MAGALHAES R, et al. Distributed acoustic sensing for seismic monitoring [C]// Proceedings of the Optical Fiber Communications Conference and Exhibition. San Francisco: IEEE, 2021: 1–3.
|
|
|
| [81] |
WILLIAMS E F, FERNÁNDEZ-RUIZ M R, MAGALHAES R, et al Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 2019, 10: 5778
doi: 10.1038/s41467-019-13262-7
|
|
|
| [82] |
HOWE B SMART submarine cable technology can facilitate acoustics on the global scale[J]. The Journal of the Acoustical Society of America, 2023, 154 (Suppl.4): A176
|
|
|
| [83] |
张若愚, 袁伟杰, 崔原豪, 等 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46 (6): 17- 23 ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al Integrated sensing and communications with massive MIMO for 6G: status and prospect[J]. Mobile Communications, 2022, 46 (6): 17- 23
|
|
|
| [84] |
ZHOU W, ZHANG R, CHEN G, et al Integrated sensing and communication waveform design: a survey[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1930- 1949
doi: 10.1109/OJCOMS.2022.3215683
|
|
|
| [85] |
任红, 张若愚, 缪晨, 等 面向智慧海洋的MIMO探测通信一体化波束成形设计[J]. 数字海洋与水下攻防, 2023, 6 (6): 648- 655 REN Hong, ZHANG Ruoyu, MIAO Chen, et al Beamforming design of MIMO integrated detection and communication for smart ocean[J]. Digital Ocean and Underwater Warfare, 2023, 6 (6): 648- 655
|
|
|
| [86] |
HOWE B M, SAGEN H New developments in submarine cable technology can facilitate acoustics in Polar regions and on the global scale[J]. The Journal of the Acoustical Society of America, 2022, 152 (Suppl.4): A73
|
|
|
| [87] |
LENTZ S, HOWE B. Scientific monitoring and reliable telecommunications (SMART) cable systems: integration of sensors into telecommunications repeaters [C]// Proceedings of the OCEANS - MTS/IEEE Kobe Techno-Oceans. Kobe: IEEE, 2018: 1–7.
|
|
|
| [88] |
MATSUMOTO H, AARAKI E, KAWAGUCHI K Experimental evaluation of initial characteristics of DONET pressure sensors[J]. Marine Technology Society Journal, 2018, 52 (3): 109- 119
doi: 10.4031/MTSJ.52.3.3
|
|
|
| [89] |
WILCOCK W, MANALANG D, HARRINGTON M, et al. A Seafloor test of the A-0-A approach to calibrating pressure sensors for vertical geodesy [C]// AGU Fall Meeting 2017. New Orleans: AGU, 2017.
|
|
|
| [90] |
FOUCH M, HOWE B, LENTZ S. SMART (sensor monitoring and reliable telecommunications) repeaters: sensor-enabled submarine fiber optic repeaters for multi-scale and multi-use monitoring and observing [C]// Ocean Visions Summit 2021. [S.l.]: AGU, 2021.
|
|
|
| [91] |
PAPAPAVLOU C, PAXIMADIS K, UZUNIDIS D, et al Toward SDM-based submarine optical networks: a review of their evolution and upcoming trends[J]. Telecom, 2022, 3 (2): 234- 280
doi: 10.3390/telecom3020015
|
|
|
| [92] |
COLAS F, PERHIRIN S, AUDO F, et al. Power and data over fiber for sea-floor observatories [C]// Suboptic 2016. Dubai: HAL, 2016.
|
|
|
| [93] |
FOUCH M, LENTZ S, HOWE B, et al. SMART cables: integration of environmental sensors into submarine telecommunications cables for improved ocean monitoring [C]// EGU General Assembly 2022 Conference. Vienna: EGU, 2022.
|
|
|
| [94] |
许人东, 黄豪彩, 胥国祥, 等. 一种可快速更换扩展的海底监测用海底光缆分支器: CN115201983A [P]. 2022–10–18.
|
|
|
| [95] |
许人东, 黄豪彩, 胥国祥, 等. 一种模块化可用于监测和通信的海缆分支器: CN115201984B [P]. 2023–12–29.
|
|
|
| [96] |
IRRGANG C, WEBER T, THOMAS M. Assimilation of SMART cable observations to improve global ocean models [C]// AGU Fall Meeting 2018. Washington, D. C. : AGU, 2018.
|
|
|
| [97] |
RENNINGER-ROJAS K, TROSSMAN D, HARRISON C, et al. Assessing the potential of SMART subsea cables for advanced ocean monitoring [C]// Proceedings of the OCEANS 2024 - Singapore. Singapore: IEEE, 2024: 1–11.
|
|
|
| [98] |
DE SANTIS A, CHIAPPINI M, MARINARO G, et al InSEA project: initiatives in supporting the consolidation and enhancement of the EMSO infrastructure and related activities[J]. Frontiers in Marine Science, 2022, 9: 846701
doi: 10.3389/fmars.2022.846701
|
|
|
| [99] |
MARINARO G, HOWE B, LENTZ S, et al. Sensor enabled scientific monitoring and reliable telecommunications (SMART) cable wet demonstrator project at EMSO Western Ionian Sea facility [C]// AGU Fall Meeting 2019. San Francisco: AGU, 2019.
|
|
|
| [100] |
GROSSMAN J, KONG L, HOWE B, et al. Use of SMART subsea cables for faster earthquake and tsunami wave detection: Vanuatu-New Caledonia [C]// AGU Fall Meeting 2022. Chicago: AGU, 2022.
|
|
|
| [101] |
TILMANN F, HOWE B, BUTLER R, et al. SMART submarine cable applications in earthquake and tsunami science and early warning [R]. Potsdam: [s.n.], 2017.
|
|
|
| [102] |
NEFF P, ANDREASEN J, ROOP H, et al. Antarctic subsea cable workshop report: high-speed connectivity needs to advance US Antarctic science [R]. Saint Paul: [s.n.], 2021.
|
|
|
| [103] |
ROWE C A, HOWE B M, FOUCH M J, et al SMART cables observing the oceans and earth[J]. Marine Technology Society Journal, 2022, 56 (5): 13- 25
doi: 10.4031/MTSJ.56.5.3
|
|
|
| [104] |
DAÑOBEITIA J, SORRIBAS J, PIRENNE B, et al. Ocean observing systems combining SMART cables with seafloor observatories [C]// AGU Fall Meeting 2024. Washington, D. C: [s.n.], 2024.
|
|
|
| [105] |
PIRENNE B, MORAN K, HOWE B. Real-time, year-round, cross-Arctic observations integrating three complementary technologies into submarine telecommunication cables [C]// Proceedings of the OCEANS 2024. Halifax: IEEE, 2024: 1–4.
|
|
|
| [106] |
THIELE T. Blue infrastructure finance: a new approach, integrating nature-based solutions for coastal resilience [R]. [S.l.]: IUCN, 2020.
|
|
|
| [107] |
HOWE B M, ANGOVE M, AUCAN J, et al SMART subsea cables for observing the Earth and ocean, mitigating environmental hazards, and supporting the blue economy[J]. Frontiers in Earth Science, 2022, 9: 775544
doi: 10.3389/feart.2021.775544
|
|
|
| [108] |
HOWE B M, BUTLER R, JOINT TASK FORCE U. Emerging subsea networks: SMART cable systems for science and society [C]// 2016 Ocean Sciences Meeting. New Orleans: AGU, 2016.
|
|
|
| [109] |
HOWE B, TILMANN F, HEIMBACH P, et al. Ocean and earth observations with SMART subsea cables supporting the united nations decade of ocean science for sustainable development [C]// 28th General Assembly of the International Union of Geodesy and Geophysics 2023. Berlin: [s.n.], 2023.
|
|
|
| [110] |
TANHUA T, POULIQUEN S, HAUSMAN J, et al Ocean FAIR data services[J]. Frontiers in Marine Science, 2019, 6: 440
doi: 10.3389/fmars.2019.00440
|
|
|
| [111] |
STROLLO A, CAMBAZ D, CLINTON J, et al EIDA: the European integrated data archive and service infrastructure within ORFEUS[J]. Seismological Research Letters, 2021, 92 (3): 1788- 1795
doi: 10.1785/0220200413
|
|
|
| [112] |
KONG L, HOWE B. SMART subsea cables for observing the ocean and earth: update for ocean decade tsunami programme [C]// AGU Fall Meeting 2021. New Orleans: AGU, 2021.
|
|
|
| [113] |
ROWE C, HOWE B, ANGOVE M, et al. An Update on the SMART cables initiative for observing the ocean and earth [C]// AGU Fall Meeting 2022. Chicago: AGU, 2022.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|