Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1858-1866    DOI: 10.3785/j.issn.1008-973X.2020.09.023
    
Influence of mineral components of suspended sediment on salinity measurement
Qi-jun LI1(),Yan-ming YAO1,Jian-ge JIAO2,Jin-xiong YUAN1,Xin-yu ZHAO3,*()
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310058, China
3. Taizhou Port and Shipping Administration Bureau, Taizhou 318000, China
Download: HTML     PDF(1408KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Quartz, kaolin and their mixture were used to simulate suspended sediment minerals. Salinity was measured by CTD75M in different initial salinities and suspended sediment concentrations. Results indicate that the measured salinity decreases with the decrease of initial salinity, the increase of suspended sediment concentration and the decrease of mineral component density. Effective medium percolation model and Maxwell conductivity model were applied to analyze the electrical conductivity in turbid water. The experimental data fitted well with the above theoretical conductivity formulas. Results indicate that the volume of suspended sediment is the key factor affecting the relative electrical conductivity. The experimental data of the existing literature were analyzed, indicating that the empirical salinity correction formula based on suspended sediment concentration has regional limitations, which is not applicable in coastal waters with different suspended sediment densities. Hence, a modified formula of theoretical salinity based on suspended sediment volume fraction was proposed to improve the applicable scope of the formula.



Key wordsmineral components      salinity measurement      electrical conductivity model      theoretical modified formula      practical salinity scale of 1978     
Received: 01 August 2019      Published: 22 September 2020
CLC:  P 731.12  
Corresponding Authors: Xin-yu ZHAO     E-mail: 3130100107@zju.edu.cn;zxy-tzgh@126.com
Cite this article:

Qi-jun LI,Yan-ming YAO,Jian-ge JIAO,Jin-xiong YUAN,Xin-yu ZHAO. Influence of mineral components of suspended sediment on salinity measurement. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1858-1866.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.023     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1858


悬沙矿物组分对盐度测量的影响

选用石英砂、高岭土及两者的混合物模拟悬沙矿物,利用温盐深剖面仪CTD75M测定不同初始盐度和悬沙浓度下的水体盐度. 试验结果表明,测量盐度随初始盐度的减小、悬沙浓度的增大以及矿物组分密度的减小而减小. 运用有效介质渗透模型和Maxwell电导率模型分析含沙盐水的电导率;试验数据与电导率理论公式拟合良好,显示悬沙所占体积是影响相对电导率的主要因素. 对已有文献的试验数据进行分析,结果表明:基于悬沙浓度的经验盐度修正公式在悬沙密度不同的沿海海域并不适用,具有区域局限性. 为此提出基于悬沙体积分数的理论盐度修正公式,提高公式的适用范围.


关键词: 矿物组分,  盐度测量,  电导率模型,  理论修正公式,  1978实用盐标 
Fig.1 Sketch map and schematic diagram of conductivity sensor with seven electrodes
Fig.2 Grain size accumulation curve of quartz and kaolin sample
电导率模型 原公式 简化公式
串联模型[29] $\sigma _{\rm{ser } }={\left( {\dfrac{ {\varphi _{\rm{m} } } }{ {\sigma _{\rm{m} } } } + \dfrac{ {\varphi _{\rm{p} } } }{ {\sigma _{\rm{p} } } } } \right)^{ - 1} }{\rm{ } }\;{\simfont\text{(}}6{\simfont\text{)}}$ $\sigma '_{\rm{ser } } = 0\;{\simfont\text{(}}7{\simfont\text{)}}$
并联模型[29] $\sigma _{\rm{par} }=\sigma _{\rm{m} }\varphi _{\rm{m} } + \sigma _{\rm{p} }\varphi _{\rm{p } }\;{\simfont\text{(}}8{\simfont\text{)}}$ $\sigma '_{\rm{par} }=\sigma _{\rm{m} }\varphi _{\rm{m } }\;{\simfont\text{(}}9{\simfont\text{)}}$
有效介质渗透模型[25] $\begin{array}{l} \sigma _{\rm{EM} }=\dfrac{1}{4}\Bigg\{ {\left( {3\varphi _{\rm{m} } - 1} \right)\sigma _{\rm{m} } + \left( {3\varphi _{\rm{p} } - 1} \right)\sigma _{\rm{p} } + } \\ \left. { { {\left[ { { {\left( {\left( {3\varphi _{\rm{m} } - 1} \right)\sigma _{\rm{m} } + \left( {3\varphi _{\rm{p} } - 1} \right)\sigma _{\rm{p} } } \right)}^2} + 8\sigma _{\rm{m} }\sigma _{\rm{p} } } \right]}^{{1}/{2} } } } \right\}\;{\simfont\text{(}}10{\simfont\text{)}}\end{array}$ $\sigma '_{\rm{EM} }=\dfrac{ {\rm{1} } }{2}\left( {3\varphi _{\rm{m} } - 1} \right)\sigma _{\rm{m } }\;{\simfont\text{(}}11{\simfont\text{)}}$
H-S模型下边界[30] $\sigma _{\rm{HS -} }=\sigma _{\rm{p} } + \varphi _{\rm{m} }{\left( {\dfrac{1}{ {\sigma _{\rm{m} } - \sigma _{\rm{p} } } } + \dfrac{ {\varphi _{\rm{p} } } }{ {3\sigma _{\rm{p} } } }} \right)^{ - 1} }{\rm{ } }\;{\simfont\text{(}}12{\simfont\text{)}}$ $\sigma '_{\rm{HS -}} = 0 \;{\simfont\text{(}}13{\simfont\text{)}}$
H-S模型上边界[30] $\sigma _{\rm{HS +}} = \sigma _{\rm{m}} + \varphi _{\rm{p}}{\left( {\dfrac{1}{{\sigma _{\rm{p}} - \sigma _{\rm{m}}}} + \dfrac{{\varphi _{\rm{m}}}}{{3\sigma _{\rm{m}}}}} \right)^{ - 1}}{\rm{ }}\;{\simfont\text{(}}14{\simfont\text{)}}$ $\sigma '_{\rm{HS +} }=\sigma _{\rm{m} } + \varphi _{\rm{p} }{\left( {\dfrac{ {\varphi _{\rm{m} } } }{ {3\sigma _{\rm{m} } } } - \dfrac{1}{ {\sigma _{\rm{m} } } }} \right)^{ - 1} }{\rm{ } }\;{\simfont\text{(}}15{\simfont\text{)}}$
Maxwell模型[31] $\sigma _{\rm{matrix} }=\sigma _{\rm{m} }\left( {1 + \dfrac{ {\varphi _{\rm{p} } } }{ {\left( {1 - \varphi _{\rm{p} } } \right){\rm{/3} } + { {\sigma _{\rm{m} } } / {\left( {\sigma _{\rm{p} } - \sigma _{\rm{m} } } \right)} } } }} \right)\;{\simfont\text{(}}16{\simfont\text{)}}$ $\sigma '_{\rm{matrix} }=\sigma _{\rm{m} }\dfrac{ {2 - 2\varphi _{\rm{p} } } }{ {2 + \varphi _{\rm{p} } } }{\rm{ } }\;{\simfont\text{(}}17{\simfont\text{)}}$
Tab.1 Electrical conductivity models and its corresponding simplified formulas
Fig.3 Relationship between NaCl mass concentration and measured salinity by CTD75M
Fig.4 Residual salinity depending on different quartz and kaolin mass concentration in ultrapure water
Fig.5 Change of measurement salinity over time after stopping magnetic stirring blender
Fig.6 Measurement salinity corresponding to different initial salinities and different mineral compositions
Fig.7 Relationship between relative conductivity and suspended sediment volume ratio
Fig.8 Relative conductivity of relative error derived from test groups and electrical conductivity models under different volume ratios
Fig.9 Relationship between suspended sediment concentration and relative conductivity in test group and other literatures
[1]   HOEGH-GULDBERG O Climate change, coral bleaching and the future of the world's coral reefs[J]. Marine and Freshwater Research, 1999, 50 (8): 839- 866
[2]   张世勇, 邵俊杰, 陈校辉, 等 盐度对斑点叉尾鮰幼鱼生长性能、肌肉持水力和营养组成的影响[J]. 生物学杂志, 2018, 35 (3): 57- 61
ZHANG Shi-yong, SHAO Jun-jie, CHEN Xiao-hui, et al Effects of salinities on growth, water binding capacity and nutrients of in channel catfish fingerlings[J]. Journal of Biology, 2018, 35 (3): 57- 61
doi: 10.3969/j.issn.2095-1736.2018.03.057
[3]   金方彭, 李光华, 李林, 等 温度、pH和盐度对后背鲈鲤幼鱼存活的影响[J]. 水生生物学报, 2018, 42 (3): 578- 583
JIN Fang-peng, LI Guang-hua, LI Lin, et al Effects of temperature, pH and salinity on the survival of juvenile Percocypris Pingi Retrodorslis [J]. Acta Hydrobiologica Sinica, 2018, 42 (3): 578- 583
[4]   路允良, 王芳, 赵卓英, 等 盐度对三疣梭子蟹生长、蜕壳及能量利用的影响[J]. 中国水产科学, 2012, 19 (2): 237- 245
LU Yun-liang, WANG Fang, ZHAO Zhuo-ying, et al Effects of salinity on growth, molt and energy utilization of juvenile swimming crab Portunus trituberculatus [J]. Journal of Fishery Sciences of China, 2012, 19 (2): 237- 245
[5]   梁俊平, 李健, 李吉涛, 等 盐度对脊尾白虾亲虾抱卵及其子代生长发育的影响[J]. 应用生态学报, 2014, 25 (7): 2105- 2113
LIANG Jun-ping, LI Jian, LI Ji-tao, et al Effect of salinity on spawning and larval development of Exopalaemon carinicauda [J]. Chinese Journal of Applied Ecology, 2014, 25 (7): 2105- 2113
[6]   杨旖祎, 李轶, 叶属峰, 等 乐清湾盐度环境梯度下浮游植物生态阈值研究[J]. 海洋环境科学, 2018, 37 (4): 499- 504
YANG Yi-yi, LI Yi, YE Shu-feng, et al Studies on the ecological threshold of phytoplankton to the environmental gradient of salinity in the Yueqing bay, Zhejiang province, China[J]. Marine Environmental Science, 2018, 37 (4): 499- 504
[7]   WAYCOTT M, DURATE C M, CARRUTHERS T J B, et al Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (30): 12377- 12381
doi: 10.1073/pnas.0905620106
[8]   丁磊, 陈黎明, 高祥宇, 等 长江口水源地取水口盐度对径潮动力的响应[J]. 水利水运工程学报, 2018, (5): 14- 23
DING Lei, CHEN Li-ming, GAO Xiang-yu, et al Response of salinity at water source intakes to runoff and tidal dynamics of Tangtze River estuary[J]. Hydro-Science and Engineering, 2018, (5): 14- 23
[9]   曹振轶, 鲍敏, 管卫兵, 等 北部湾东北部水团分布及季节变化分析[J]. 海洋与湖沼, 2019, 50 (3): 532- 542
CAO Zhen-yi, BAO Min, GUAN Wei-bin, et al Water-mass evolution and the seasonal change in northeast of the Beibu gulf, China[J]. Oceanologia et Limnologia Sinica, 2019, 50 (3): 532- 542
[10]   GUSTAFSON C, KEY K, EVANS R L Aquifer systems extending far offshore on the U.S. Atlantic margin[J]. Scientific Reports, 2019, 9 (1): 8709
doi: 10.1038/s41598-019-44611-7
[11]   SUN Z, JIAO J, HUANG S, et al Effects of Suspended Sediment on Salinity Measurements[J]. IEEE Journal of Oceanic Engineering, 2018, 43 (1): 56- 65
doi: 10.1109/JOE.2017.2653278
[12]   CULKIN F, RILEY J P, COX R A, et al Chlorinity, conductivity and density of sea-water[J]. Nature, 1962, 193 (4815): 518- 520
doi: 10.1038/193518a0
[13]   PAWLOWICZ R The electrical conductivity of seawater at high temperatures and salinities[J]. Desalination, 2012, 300: 32- 39
doi: 10.1016/j.desal.2012.06.001
[14]   PAWLOWICZ R, WRIGHT D G, MILLERO F J The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater[J]. Ocean Science, 2011, 7 (3): 363- 387
doi: 10.5194/os-7-363-2011
[15]   PAWLOWICZ R A model for predicting changes in the electrical conductivity, practical salinity, and absolute salinity of seawater due to variations in relative chemical composition[J]. Ocean Science, 2010, 6 (1): 361- 378
doi: 10.5194/os-6-361-2010
[16]   TRAYKOVSKI P, GEYER W R, IRISH J D, et al The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf[J]. Continental Shelf Research, 2000, 20 (16): 2113- 2140
doi: 10.1016/S0278-4343(00)00071-6
[17]   戴茜, 单红仙, 孟祥梅, 等 基于电导率测定海水悬沙含量试验研究[J]. 海洋学报, 2008, (5): 137- 142
DAI Qian, SHAN Hong-xian, MENG Xiang-mei, et al Laboratory study on suspended sediment content measurement of seawater based on electrical conductivity[J]. Acta Oceanologica Sinica, 2008, (5): 137- 142
[18]   戴茜, 单红仙, 崔文林, 等 悬浮泥沙含量与电导率关系及其影响因素的实验研究[J]. 海洋学报, 2011, 33 (4): 88- 94
DAI Qian, SHAN Hong-xian, CUI Wen-lin, et al A laboratory study on the relationships between suspended sediment content and the conductivity and their influencing factors[J]. Acta Oceanologica Sinica, 2011, 33 (4): 88- 94
[19]   MURALEEDHARAN K R, DINESH-KUMAR P K, PRASANNA-KUMER S, et al Observed salinity changes in the Alappuzha mud bank, southwest coast of India and its implication to hypothesis of mudbank formation[J]. Continental Shelf Research, 2017, 137: 39- 45
doi: 10.1016/j.csr.2017.01.015
[20]   韩宗珠, 张军强, 邹昊, 等 渤海湾北部底质沉积物中黏土矿物组成与物源研究[J]. 中国海洋大学学报:自然科学版, 2011, 41 (11): 95- 102
HAN Zong-zhu, ZHANG Jun-qiang, ZOU Hao, et al Characteristics and provenance of clay mineral assemblage of sediments from the northern part of the Bohai bay[J]. Periodical of Ocean University of China, 2011, 41 (11): 95- 102
[21]   刘朝. 钱塘江流域河流表层沉积物特征及物源分析[D]. 上海: 华东师范大学, 2016.
LIU Chao. Study on the characteristics of surface sediment in the Qiantang river and analysis of provenance [D]. Shanghai: East China Normal University, 2016
[22]   李建国 高性能七电极电导率传感器技术研究[J]. 海洋技术, 2009, 28 (2): 4- 10
LI Jian-guo Research of key technologies of high-performance conductivity sensor with 7 electrodes[J]. Ocean Techology, 2009, 28 (2): 4- 10
doi: 10.3969/j.issn.1003-2029.2009.02.002
[23]   钱宁. 泥沙运动力学[M]. 北京: 科学出版社, 1983.
[24]   HELD P, KEGLER P, SCHROTTKE K Influence of suspended particulate matter on salinity measurements[J]. Continental Shelf Research, 2014, 85 (5): 1- 8
[25]   郭颖星, 张东宁, 祝爱玉, 等 斜长石、辉石混合模型的电导率有限元数值计算研究[J]. 地球物理学报, 2018, 61 (9): 3722- 3734
GUO Ying-xing, ZHANG Dong-ning, ZHU Ai-yu, et al Numerical simulation study on the electrical conductivity of plagioclase-pyroxene mixed models[J]. Chinese Journal of Geophysics, 2018, 61 (9): 3722- 3734
[26]   HERMAN R An introduction to electrical resistivity in geophysics[J]. American Journal of Physics, 2001, 69 (9): 943
doi: 10.1119/1.1378013
[27]   LAGOURETTE B, PEYRELASSE J, BONED C, et al Percolative conduction in microemulsion type systems[J]. Nature, 1979, 281 (5726): 60- 62
[28]   CLAUSSE M, PEYRELASSE J, HEIL J, et al Bicontinuous structure zones in microemulsions[J]. Nature, 1981, 293 (5834): 636- 638
doi: 10.1038/293636a0
[29]   HASAN M F, ABUEL-NAGA H, BROADBRIDGE P, et al Series-parallel structure-oriented electrical conductivity model of saturated clays[J]. Applied Clay Science, 2018, 162: 239- 251
doi: 10.1016/j.clay.2018.06.020
[30]   HASHIN Z, SHTRIKMAN S A A variational approach to the theory of effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics, 1962, 33 (10): 3125- 3131
doi: 10.1063/1.1728579
[31]   EULER F Simple geometric model for the effect of porosity on material constants[J]. Journal of Applied Physics, 1957, 28 (11): 1342- 1345
doi: 10.1063/1.1722648
[32]   HELD P, SCHROTTKE K, BARTHOLOM? A Generation and evolution of high-frequency internal waves in the Ems estuary, Germany[J]. Journal of Sea Research, 2013, 78: 25- 35
doi: 10.1016/j.seares.2012.12.001
[33]   焦建格, 黄森军, 郑浩磊, 等 悬沙浓度对盐度测量的影响及修正[J]. 浙江大学学报:工学版, 2018, 52 (9): 1644- 1650
JIAO Jian-ge, HUANG Seng-jun, ZHENG Hao-lei, et al Influence and correction of suspended sediment concentration on salinity measurement[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (9): 1644- 1650
[34]   胡康博. 黄河泥沙沉积物的理化性质及其对磷的吸附行为研究[D]. 北京: 北京林业大学, 2011.
HU Kang-bo. Study on physicochemical characteristics and phosphate adsorption behaviors of sediments from the Yellow River [D]. Beijing: Beijing Forestry University, 2011.
[35]   项国圣. 含盐环境中膨润土的膨胀理论及膨胀衰减机理研究[D]. 上海交通大学, 2015.
XIANG Guo-sheng. Theory of swelling properties and mechanism on swell attenuation of bentonite in sal solution [D]. Shanghai: Shanghai Jiao Tong University, 2015.
No related articles found!