|
|
|
| Asymmetric structure based hyperspectral and LiDAR image classification model |
Mingwan LI( ),Sheng FANG*( ),Zhe LI |
| College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
|
|
|
Abstract An asymmetric dual-branch modeling method was proposed to address the modality discrepancy and heterogeneous information structures in the joint classification of hyperspectral and LiDAR images. Separate feature extractors were designed for the dominant and auxiliary modalities. In the hyperspectral branch, a serial structure combining a vision transformer and a convolutional neural network was constructed. A central-focus Mamba module was introduced to enhance perception of central regions through modeling context via spiral paths. A spatial-spectral refinement module was applied to improve feature expression quality via fine-grained optimization. In the LiDAR branch, a lightweight convolutional structure was used to extract structural and elevation information, reducing redundant modeling while maintaining scale alignment. Experiments were conducted on three benchmark remote sensing datasets. Superior performance was achieved in terms of overall accuracy, average accuracy, and Kappa coefficient, demonstrating strong robustness and generalization ability. Results show that classification performance is significantly improved by the coordinated design of modality-specific modeling and region-aware enhancement mechanisms.
|
|
Received: 15 July 2025
Published: 25 November 2025
|
|
|
| Fund: 山东省自然科学基金资助项目(ZR2024MF113,ZR2022MF325). |
|
Corresponding Authors:
Sheng FANG
E-mail: limingwanwan@163.com;fangsheng@tsinghua.org.cn
|
非对称结构的高光谱与激光雷达图像分类模型
针对高光谱图像与激光雷达图像联合分类任务中模态差异显著、信息结构异质的问题,提出非对称双分支建模方法,分别适配主导模态与辅助模态的特征提取需求. 在高光谱分支中,构建融合视觉transformer与卷积神经网络的串联结构,引入中心聚焦的Mamba模块,通过螺旋路径建模上下文增强对中心区域的感知能力,同时结合空间-光谱维度的细粒度优化模块提升特征表达质量. 在激光雷达分支中,采用轻量卷积结构提取结构与高程信息,减少冗余建模并保持尺度对齐. 实验在3个典型遥感数据集上进行,所提方法在整体精度、平均精度与一致性系数等评价指标上均优于现有方法,表现出较强的鲁棒性与泛化能力. 结果表明,差异化建模与区域感知增强机制的协同设计,可显著提升多模态遥感图像分类性能.
关键词:
多模态遥感图像分类,
非对称策略,
高光谱图像,
激光雷达图像,
Mamba,
ViT-CNN 框架
|
|
| [1] |
HONG D, GAO L, YOKOYA N, et al More diverse means better: multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (5): 4340- 4354
doi: 10.1109/TGRS.2020.3016820
|
|
|
| [2] |
HUANG J, ZHANG Y, YANG F, et al Attention-guided fusion and classification for hyperspectral and LiDAR data[J]. Remote Sensing, 2024, 16 (1): 94
|
|
|
| [3] |
LI H, GHAMISI P, SOERGEL U, et al Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks[J]. Remote Sensing, 2018, 10 (10): 1649
doi: 10.3390/rs10101649
|
|
|
| [4] |
HONG D, GAO L, HANG R, et al Deep encoder-decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 5500205
|
|
|
| [5] |
FENG Y, ZHU J, SONG R, et al S2EFT: spectral-spatial-elevation fusion transformer for hyperspectral image and LiDAR classification[J]. Knowledge-Based Systems, 2024, 283: 111190
doi: 10.1016/j.knosys.2023.111190
|
|
|
| [6] |
ZHANG Y, XU S, HONG D, et al Multimodal transformer network for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5514317
|
|
|
| [7] |
ZHAO G, YE Q, SUN L, et al Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5500716
|
|
|
| [8] |
XUE Z, TAN X, YU X, et al Deep hierarchical vision transformer for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Image Processing, 2022, 31: 3095- 3110
doi: 10.1109/TIP.2022.3162964
|
|
|
| [9] |
NI K, WANG D, ZHENG Z, et al MHST: multiscale head selection transformer for hyperspectral and LiDAR classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5470- 5483
doi: 10.1109/JSTARS.2024.3366614
|
|
|
| [11] |
SONG R, FENG Y, CHENG W, et al BS2T: bottleneck spatial–spectral transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5532117
|
|
|
| [12] |
JIA S, WANG Y, JIANG S, et al A center-masked transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5510416
|
|
|
| [13] |
ZHAO S, CHEN H, ZHANG X, et al RS-mamba for large remote sensing image dense prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5633314
|
|
|
| [14] |
FANG S, LI K, LI Z S2ENet: spatial–spectral cross-modal enhancement network for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6504205
|
|
|
| [15] |
GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces [EB/OL]. (2024-05-31)[2025-7-11]. https://arxiv.org/abs/2312.00752.
|
|
|
| [16] |
WANG X, ZHU J, FENG Y, et al MS2CANet: multiscale spatial–spectral cross-modal attention network for hyperspectral image and LiDAR classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5501505
|
|
|
| [17] |
GADER P, ZARE A, CLOSE R, et al. MUUFL Gulfport hyperspectral and LiDAR airborne data set: REP-2013-570 [R]. Gainesville, FL: University of Florida, 2013.
|
|
|
| [18] |
DU X, ZARE A. Technical report: scene label ground truth map for MUUFL gulfport data set [EB/OL]. (2017-04-17)[2025-07-15]. http://ufdc.ufl.edu/IR00009711/00001.
|
|
|
| [19] |
ROY S K, KRISHNA G, DUBEY S R, et al HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (2): 277- 281
doi: 10.1109/LGRS.2019.2918719
|
|
|
| [20] |
HONG D, HAN Z, YAO J, et al SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5518615
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|