Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1265-1276    DOI: 10.3785/j.issn.1008-973X.2025.06.017
    
Analysis and system implementation for prefabricated construction project schedule based on system dynamics
Haoxiang LI(),Gongyu HOU*(),Qinhuang CHEN,Dandan WANG,Yaohua SHAO,Zhigang TAO
School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
Download: HTML     PDF(2467KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A project schedule analysis method based on the system dynamics was proposed to facilitate the analysis and management of the prefabricated construction project schedule. The activity-on-arc network planning for prefabricated construction projects was improved according to the characteristics of prefabricated construction, and an improved algorithm for solving the activity-on-arc network planning based on the structure matrix (SM-A1) was introduced. By determining the system variables, constructing the causal loop diagram and the mixed graphs, and defining the mathematical relationships between variables, a system dynamics model for simulating the schedule of a single task (S-SD) in prefabricated construction projects was established, and its validity and reliability were verified. Combining SM-A1 and S-SD, a framework for the prefabricated construction project schedule analysis system (PCPSAS) was developed, including the design of the system’s data format, core modules, and interface, as well as the generation of an executable program. The PCPSAS was validated through the case study. The experimental results demonstrate that the PCPSAS can quickly and accurately calculate the activity-on-arc network planning time parameters for the prefabricated construction project, identify the critical tasks, and effectively analyze the impact of different corrective strategies on the prefabricated construction project schedule and cost.



Key wordsprefabricated construction project      structure matrix      activity-on-arc network      system dynamics      corrective strategy     
Received: 03 June 2024      Published: 30 May 2025
CLC:  TU 712  
Fund:  深部岩土力学与地下工程国家重点实验室创新基金资助项目(SKLGDUEK202201).
Corresponding Authors: Gongyu HOU     E-mail: hoxiangli@163.com;hgyht@126.com
Cite this article:

Haoxiang LI,Gongyu HOU,Qinhuang CHEN,Dandan WANG,Yaohua SHAO,Zhigang TAO. Analysis and system implementation for prefabricated construction project schedule based on system dynamics. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1265-1276.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.017     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1265


基于系统动力学的装配式建筑项目进度分析与系统实现

为了便于装配式建筑项目的进度分析与管理,提出基于系统动力学的进度分析方法. 根据装配式建造的特点,改进装配式建筑项目的双代号网络计划,并引入基于结构矩阵求解双代号网络计划的改进算法(SM-A1). 通过确定系统变量、构建因果关系回路图和混合图、确定变量间的数学关系等过程,建立适用于装配式建筑项目的单项作业进度模拟系统动力学模型(S-SD),并验证S-SD的有效性与可靠性. 将SM-A1与S-SD相结合,构建装配式建筑项目进度分析系统(PCPSAS)框架,设计系统的数据格式、核心模块及界面,生成可执行程序,并通过实例验证PCPSAS的有效性. 结果表明,PCPSAS可快速准确地计算装配式建筑项目的双代号网络计划的时间参数和识别关键工作,且能有效地分析不同纠偏策略对项目进度和成本的影响.


关键词: 装配式建筑项目,  结构矩阵,  双代号网络,  系统动力学,  纠偏策略 
Fig.1 Activity-on-arc network diagram of prefabricated construction project
序号搭接关系名称搭接时间增设虚工作的持续时间
1结束至开始FTS = nΔT = n
2开始至开始STS = nΔT = n?Dij
3开始至结束STF = nΔT = n?Dij?Djk
4结束至结束FTF = nΔT = n?Djk
5混合搭接FTS = aΔT = max (a, b?Dij,
c?Djk?Djk, d?Dij)
STS = b
STF = c
FTF = d
Tab.1 Transformation rules of works’ overlap relation
编号影响因素来源
1劳动力技能水平文献[3]、[4]、[13]~[16];专家访谈;
项目实践
2管理效率文献[4]、[14]、[16]~[19]
3图纸深化程度文献[5]、[6]、[14]、[18]、[20]、[21];项目实践
4返工发生文献[4]、[5]、[7]~[9]、[13]、
[15]、[22]、[23]
5不利的作业温度影响项目实践
6工程量文献[18]、[24];项目实践
7劳动力文献[4]、[5]、[13]、[18]~[20];
项目实践;专家访谈
8天气的影响文献[4]、[9]、[13]、[14]、[20]、[25]
9加班的影响文献[26]
10作业空间影响文献[4]、[18]、[20]、[26]、[27];
项目实践
11劳动力积极性项目实践
12允许作业时间项目实践
13作业保障水平
(包括材料供给)
文献[4]、[5]、[13]、[14]、[16]、[18]~[20]、[24];专家访谈;项目实践
Tab.2 Main factors affecting prefabricated construction project schedule
序号变量类型变量
1外生变量劳动力积极性、管理效率、劳动力技能水平、图纸深化程度、天气的影响、作业保障水平、允许作业时间、作业空间、不利的作业温度的影响、原劳动力计划、总工程量
2内生变量实际生产效率、加班、加班的影响、增加劳动力、作业空间影响、待完成的工作、合格的工作、返工发生、实际每日总工日
Tab.3 Types of main variables in system
Fig.2 Causal loop diagram
Fig.3 Mixed graph of production subsystem
Fig.4 Mixed graph of rectifying deviation subsystem
Fig.5 Normal distribution diagram of non-rework events
Fig.6 Impact of overtime on production efficiency
序号Tem/°FPin/%序号Tem/°FPin/%
1$ \leqslant $6010.916(80,85]4.91
2(60,65]8.827(85,90]7.60
3(65,70]6.058(90,95]7.89
4(70,75]5.549>959.27
5(75,80]0.00
Tab.4 Comparison table of working temperature and production efficiency reduction
Fig.7 Extreme condition test of S-SD
Fig.8 Integral error test of S-SD
Fig.9 Comparison between actual man-days requirements and S-SD’s simulation requirements for electrical conduit installation
Fig.10 System construction diagram of PCPSAS
Fig.11 Interface of S-SD module in PCPSAS
项目概况具体情况项目概况具体情况
项目名称深圳某装配式学校耐火等级2级
项目地点深圳市抗震设防烈度7度
建筑功能新建临时学校设计寿命50 a
建筑类型多层建筑建筑高度12 m
建筑面积6 687.92 m2结构类型模块化钢结构
Tab.5 Overview of prefabricated construction project in Shenzhen
代码名称Pd/d紧前工作搭接关系是否可跨
场地纠偏
A1结构制作1
B1FC板及维护
结构安装
1A1
C1舾装板墙体
安装
1A1
D1JDG管安装
及开孔
1B1、C1
Tab.6 Information for activities in factory
Fig.12 Activity-on-arc network planning for activities in factory of case
Fig.13 Activity-on-arc network after transformation on-site
Fig.14 Screenshot of calculation results of SM-A1 module
代码名称ES/dEF/dLS/dLF/dFF/dTF/d
A基础工程01001000
B主体吊装71871800
DJGD管安装及开孔929113102
F消防管线安装1030163606
G箱体拼接缝防水82892901
C屋面安装13283146018
H地面拼缝72272200
L舾装板墙体安装2232263604
I砂浆找平1723243007
J门窗梁焊接1821273009
K门窗安装2128303729
Q现场轻钢龙骨隔墙82982900
T卫生间防水(含蹲便池)2938324103
N自流平3036374307
OPVC地胶铺设3339404607
U卫生间地面3241354403
V卫生间墙面饰面3541384403
W卫生间隔断3743404603
R楼梯间隔墙面层2935384409
S楼梯间地面瓷砖3137404609
X强弱电间地面瓷砖2931293100
E强弱电布线934113602
M天花安装3443364502
P灯具安装3444364602
Z电气设备安装2545264601
Y外饰面安装调平3146314600
Aa收尾调试4651465100
Tab.7 Calculation results of SM-A1 module
序号参数数值
1图纸深化程度0.9
2实际作业温度/℃35
3劳动力积极性1.0
4作业保障水平1.0
5作业空间/m2600
6管理效率0.9
7初始技能水平0.5
8总工程量/工日260
9原劳动力计划/(人·d?1)20
10允许作业时间/h7
Tab.8 Main parameters setting of S-SD module
序号策略Pd/dRm/工日Wt/工日
1不改善条件,不纠偏13260165
2不改善条件,加人赶工131 31829
3改善条件,不纠偏13260118
4改善条件,加人赶工1346120
5改善条件,加班赶工1340325
Tab.9 Simulation results on schedule of work D in factory under different strategies by S-SD module
[1]   连静. 装配式施工项目调度多目标优化研究 [D]. 西安: 西安建筑科技大学, 2020.
LIAN Jing. Research on multi-objective optimization of prefabricated construction project scheduling [D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
[2]   CHO K, AHN S, PARK K, et al Schedule delay leading indicators in precast concrete construction projects: qualitative comparative analysis of Korean cases[J]. Journal of Management in Engineering, 2021, 37 (4): 04021024
[3]   ARASHPOUR M, WAKEFIELD R, LEE E W M, et al Analysis of interacting uncertainties in on-site and off-site activities: implications for hybrid construction[J]. International Journal of Project Management, 2016, 34 (7): 1393- 1402
[4]   JI Y, QI L, LIU Y, et al Assessing and prioritising delay factors of prefabricated concrete building projects in China[J]. Applied Sciences, 2018, 8 (11): 2324
[5]   沈楷程. 装配式建造过程返工风险研究[D]. 北京: 清华大学, 2020.
SHEN Kaicheng. Research on rework risk of prefabricated construction process [D]. Beijing: Tsinghua University, 2020.
[6]   WASANA K H I, GUNATILAKE S, FASNA M F F. Performance comparison of prefabricated building construction projects vs. traditional on-site construction projects [C]// Proceedings of the Moratuwa Engineering Research Conference. Moratuwa: IEEE, 2019: 169–174.
[7]   李丽红, 于明瑜, 辛雨泽 基于EFA-CFA的装配式建筑工程项目返工成因实证研究[J]. 项目管理评论, 2021, (2): 42- 47
LI Lihong, YU Mingyu, XIN Yuze Empirical study on the causes of rework in prefabricated building projects based on EFA-CFA[J]. Project Management Review, 2021, (2): 42- 47
[8]   崔佳林. 基于系统动力学的装配式建筑施工进度风险管理研究 [D]. 北京: 北方工业大学, 2021.
CUI Jialin. Research on construction schedule risk management of prefabricated project based on system dynamics [D]. Beijing: North China University of Technology, 2021.
[9]   LI C Z, XU X, SHEN G Q, et al A model for simulating schedule risks in prefabrication housing production: a case study of six-day cycle assembly activities in Hong Kong[J]. Journal of Cleaner Production, 2018, 185: 366- 381
[10]   张延涛, 苑晨丹 双代号搭接网络向VCPM网络转化模型研究[J]. 内蒙古大学学报: 自然科学版, 2018, 49 (1): 90- 95
ZHANG Yantao, YUAN Chendan Research on the model for transforming AOA spliced networks into VCPM networks[J]. Journal of Inner Mongolia University: Natural Science Edition, 2018, 49 (1): 90- 95
[11]   李昊翔, 侯公羽, 陈钦煌, 等 基于结构矩阵求解双代号网络计划的改进算法[J]. 华中科技大学学报: 自然科学版, 2024, 52 (11): 147- 152
LI Haoxiang, HOU Gongyu, CHEN Qinhuang, et al Improved algorithm for solving activity-on-arc network planning based on structure matrix[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2024, 52 (11): 147- 152
[12]   佟鹤晶, 乞建勋 搭接网络向双代号网络的转化[J]. 技术经济, 2009, 28 (10): 125- 128
TONG Hejing, QI Jianxun Transforming spliced network to AoA network[J]. Journal of Technology Economics, 2009, 28 (10): 125- 128
doi: 10.3969/j.issn.1002-980X.2009.10.025
[13]   WANG T, FORD D, CHONG H, et al. Causes of delays in the construction phase of Chinese building projects [J], Engineering, Construction and Architectural Management, 2018, 25(11): 1534–1551.
[14]   YAP J B H, GOAY P L, WOON Y B, et al Revisiting critical delay factors for construction: analysing projects in Malaysia[J]. Alexandria Engineering Journal, 2021, 60 (1): 1717- 1729
[15]   MAHAMID I Study of relationship between rework and labor productivity in Building[J]. Revista de la Construccion, 2020, 19 (1): 30- 40
[16]   KAZAZ A, ULUBEYLI S, TUNCBILEKLI N Causes of delays in construction projects in Turkey[J]. Journal of Civil Engineering and Management, 2012, 18 (3): 426- 435
[17]   ALSULIMAN J A Causes of delay in Saudi public construction projects[J]. Alexandria Engineering Journal, 2019, 58 (2): 801- 808
doi: 10.1016/j.aej.2019.07.002
[18]   VILES E, RUDELI N C, SANTILLI A Causes of delay in construction projects: a quantitative analysis[J]. Engineering, Construction and Architectural Management, 2020, 27 (4): 917- 935
[19]   HWANG B G, LEONG L P Comparison of schedule delay and causal factors between traditional and green construction projects[J]. Technological and Economic Development of Economy, 2013, 19 (2): 310- 330
[20]   ZHAO Y, CHEN W, YANG Z, et al Analysis on risk factors related delay in PCPs[J]. Engineering, Construction and Architectural Management, 2023, 30 (10): 4609- 4644
[21]   HAN S, LOVE P, PEÑA-MORA F A system dynamics model for assessing the impacts of design errors in construction projects[J]. Mathematical and Computer Modelling, 2013, 57 (9/10): 2044- 2053
[22]   JARKAS A M, BITAR C G Factors affecting construction labor productivity in Kuwait[J]. Journal of Construction Engineering and Management, 2012, 138 (7): 811- 820
[23]   LI C Z, HONG J, FAN C, et al Schedule delay analysis of prefabricated housing production: a hybrid dynamic approach[J]. Journal of Cleaner Production, 2018, 195: 1533- 1545
[24]   KIM H, SOIBELMAN L, GROBLER F Factor selection for delay analysis using knowledge discovery in databases[J]. Automation in Construction, 2008, 17 (5): 550- 560
[25]   ZHAO Y, CHEN W, ARASHPOUR M, et al. Predicting delays in prefabricated projects: SD-BP neural network to define effects of risk disruption [J]. Engineering, Construction and Architectural Management, 2022, 29(4): 1753–1776.
[26]   NASIRZADEH F, NOJEDEHI P Dynamic modeling of labor productivity in construction projects[J]. International Journal of Project Management, 2013, 31 (6): 903- 911
[27]   KAMING P F, HOLT G D, KOMETA S T, et al Severity diagnosis of productivity problems: a reliability analysis[J]. International Journal of Project Management, 1998, 16 (2): 107- 113
[28]   WOO S Simulation analysis of labor performance during overtime and impact on project duration[J]. KSCE Journal of Civil Engineering, 2016, 20 (7): 2614- 2623
[29]   CHANG C K, WOO S Critical review of previous studies on labor productivity loss due to overtime[J]. KSCE Journal of Civil Engineering, 2017, 21 (7): 2551- 2557
doi: 10.1007/s12205-017-1652-0
[30]   ZHANG P, DESCHENES O, MENG K, et al Temperature effects on productivity and factor reallocation: evidence from a half million Chinese manufacturing plants[J]. Journal of Environmental Economics and Management, 2018, 88: 1- 17
doi: 10.1016/j.jeem.2017.11.001
[31]   CAI X, LU Y, WANG J The impact of temperature on manufacturing worker productivity: evidence from personnel data[J]. Journal of Comparative Economics, 2018, 46 (4): 889- 905
doi: 10.1016/j.jce.2018.06.003
[32]   SOMANATHAN E, SOMANATHAN R, SUDARSHAN A, et al The impact of temperature on productivity and labor supply: evidence from Indian manufacturing[J]. Journal of Political Economy, 2021, 129 (6): 1797- 1827
doi: 10.1086/713733
[33]   徐淑玲. 工作效率时变的调度与优化问题研究 [D]. 合肥: 合肥工业大学, 2021.
XU Shuling. Research on scheduling and optimization problems of real-time changes in work efficiency [D]. Hefei: Hefei University of Technology, 2021.
[34]   VANHOUCKE M, COELHO J A tool to test and validate algorithms for the resource-constrained project scheduling problem[J]. Computers and Industrial Engineering, 2018, 118: 251- 265
doi: 10.1016/j.cie.2018.02.001
[1] Heng-jia ZHU,Si-yuan TIAN,Shuang-bao LI,Wei ZHANG. Design on electromagnetic energy regenerative dynamic vibration absorber for vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1644-1654.
[2] LOU Qi feng, MA Xiao long, YE Ying, MEI Zhen yu. Combined impact of parking charge and supply policy based on travel cost[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 257-264.
[3] JIANG Fei long, TAO Guo liang, LIU Hao, ZHAO Yong, LI Qin gwei. Dynamic analysis of humanoid lower limb based on PAM[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2054-2062.
[4] HAN Hai-rong, ZHANG Shu-you, QIU Le-miao. Technology of demand feedback and navigation based on
dynamic design structure matrix
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 637-643.