|
|
Surveillance and alerting approach for video aggregation platforms predicated upon ensemble time series forecasting model |
Xue SONG1( ),Cheng JI2,3,*( ) |
1. Shandong Branch of National Computer Network Emergency Response Technical Team, Jinan 250002, China 2. School of Computer Science, Nanjing University, Nanjing 210008, China 3. Jiangsu Branch of National Computer Network Emergency Response Technical Team, Nanjing 210003, China |
|
|
Abstract A surveillance and alerting mechanism for video aggregation platforms based on an ensemble time series forecasting model was proposed, in order to mitigate the risks of copyright infringement and content security brought by deep linking video aggregation platforms, as well as to facilitate the prompt detection and notification of network users who engaged with such platforms through illicit means. Initially, the network behavioral log data from multiple video aggregation platforms were leveraged. The network behavior characteristics of users were then extracted with IP address as the user dimension and day as the time dimension, on both the platform side and the channel side. Subsequently, long- and short-term time-series networks (LSTNet), recurrent neural networks (RNN) and multilayer perceptron (MLP) were harnessed as foundational models to construct a Stacking ensemble learning model for predicting user access behavior by learning features from base model. Ultimately, empirical validation was conducted through comparative and backtesting experiments. Results showed that the proposed method achieved a notable decrease of 0.9724 in mean squared error (MSE), a significant reduction of 0.5443 in mean absolute error (MAE), and a moderate improvement of 0.20 in balanced accuracy (BAC). The proposed method could effectively forecast access patterns to video aggregation platforms and provide early warnings for high-risk user behavior.
|
Received: 01 May 2024
Published: 30 May 2025
|
|
Fund: 国家自然科学基金面上资助项目(62272125) . |
Corresponding Authors:
Cheng JI
E-mail: 2777432504@qq.com;jicheng01@foxmail.com
|
基于集成时序预测模型的视频聚合平台监测预警方法
为了防范深度链接视频聚合平台带来的侵权风险及内容安全隐患,发现并提醒通过非法途径访问此类平台的网络用户,提出基于集成时序预测模型的视频聚合平台监测预警方法. 根据多个视频聚合平台的网络行为日志数据,以IP地址为用户维度,以天为时间维度,提取用户在平台侧和渠道侧的网络行为特征. 选择长短期时间序列网络(LSTNet)、循环神经网络(RNN)和多层感知机(MLP)3个模型作为基模型,构造Stacking集成学习模型,通过Stacking集成模型学习基模型特征从而实现对用户访问行为的预测. 进行对比实验和回测实验,结果表明,本研究方法相比于单模型预测方法,在均方误差(MSE)指标上降低0.9724,在平均绝对误差(MAE)指标上降低0.5443,在自定义平衡准确率(BAC)指标上提升0.20,能够对视频聚合平台访问情况进行预测从而实现对高风险用户行为的预警.
关键词:
视频聚合平台,
时序预测,
集成学习,
网络行为,
监测预警
|
|
[1] |
刘晓庆, 万柯 视频聚合平台的版权侵权责任[J]. 中国版权, 2014, (4): 44- 47 LIU Xiaoqing, WAN Ke Copyright infringement liability of video aggregation platform[J]. China Copyright, 2014, (4): 44- 47
doi: 10.3969/j.issn.1671-4717.2014.04.013
|
|
|
[2] |
徐晖. 视频聚合平台深度链接行为的侵权认定标准研究 [D]. 长春: 吉林大学, 2022. XU Hui. Research on infringement identification standards of deep linking behavior of video aggregation platform [D]. Changchun: Jilin University, 2022.
|
|
|
[3] |
李怡璇. 视频聚合平台的侵权责任研究: 以“盗链” 行为为例 [D]. 济南: 山东大学, 2020. LI Yixuan. Research on infringement liability of video aggregation platform: taking “hotlinking” as an example [D]. Jinan: Shandong University, 2020.
|
|
|
[4] |
徐珉川 论互联网“提供作品” 行为的界定[J]. 中外法学, 2020, 32 (2): 378- 401 XU Minchuan On the definition of making work available[J]. Peking University Law Journal, 2020, 32 (2): 378- 401
|
|
|
[5] |
何昊天. 网络环境下著作权默示许可制度研究 [D]. 济南: 山东大学, 2022. HE Haotian. Study on the implied license of copyright in the network environment [D]. Jinan: Shandong University, 2022.
|
|
|
[6] |
刘友华, 魏远山 聚合分发平台与传统新闻出版者的著作权冲突及解决[J]. 新闻与传播研究, 2018, 25 (5): 69- 87,127 LIU Youhua, WEI Yuanshan Copyright conflicts and solutions between aggregation distribution platforms and traditional news publishers[J]. Journalism and Communication, 2018, 25 (5): 69- 87,127
|
|
|
[7] |
黎维, 陶蔚, 周星宇, 等 时空序列预测方法综述[J]. 计算机应用研究, 2020, 37 (10): 2881- 2888 LI Wei, TAO Wei, ZHOU Xingyu, et al Survey of spatio-temporal sequence prediction methods[J]. Application Research of Computers, 2020, 37 (10): 2881- 2888
|
|
|
[8] |
危婷, 张宏海, 蔺小丽, 等 云服务网站用户复访行为预测模型研究[J]. 数据与计算发展前沿, 2022, 4 (3): 124- 130 WEI Ting, ZHANG Honghai, LIN Xiaoli, et al Predictive model of the revisit behavior of cloud service site users[J]. Frontiers of Data and Computing, 2022, 4 (3): 124- 130
|
|
|
[9] |
姚丽, 崔超然, 马乐乐, 等 基于校园上网行为感知的学生成绩预测方法[J]. 计算机研究与发展, 2022, 59 (8): 1770- 1781 YAO Li, CUI Chaoran, MA Lele, et al Student performance prediction base on campus online behavior-aware[J]. Journal of Computer Research and Development, 2022, 59 (8): 1770- 1781
doi: 10.7544/issn1000-1239.20220060
|
|
|
[10] |
周胜利, 徐啸炀 基于网络流量的用户网络行为被害性分析模型[J]. 电信科学, 2021, 37 (2): 125- 134 ZHOU Shengli, XU Xiaoyang Victimization analysis model of user network behavior based on network traffic[J]. Telecommunications Science, 2021, 37 (2): 125- 134
doi: 10.11959/j.issn.1000-0801.2021041
|
|
|
[11] |
杨晨. 基于DNS流量的用户访问行为分析研究 [D]. 广州: 广州大学, 2022. YANG Chen. Analysis and research on users’ access behavior based on DNS traffic [D]. Guangzhou: Guangzhou University, 2022.
|
|
|
[12] |
魏佳代. 基于DNS日志的用户访问行为分析和研究 [D]. 北京: 北京交通大学, 2019. WEI Jiadai. Analysis and research of user access behavior based on DNS logs [D]. Beijing: Beijing Jiaotong University, 2019.
|
|
|
[13] |
马艺闻 视频聚合平台侵权行为的法律定性[J]. 区域治理, 2019, (38): 119- 121 MA Yiwen Legal qualification of infringement behavior of video aggregation platforms[J]. Regional Governance, 2019, (38): 119- 121
doi: 10.3969/j.issn.2096-4595.2019.38.045
|
|
|
[14] |
张晨曦. 智媒体背景下新闻编辑业务创新研究: 以新闻聚合平台为例 [D]. 吉林: 吉林大学, 2021. ZHANG Chenxi. Research on news editing business in the age of intelligence media: take news aggregation platforms as an example [D]. Jilin: Jilin University, 2021.
|
|
|
[15] |
刘溪 视频聚合平台经营者盗链行为侵害作品信息网络传播权的司法认定[J]. 法制与社会, 2019, (20): 58- 59 LIU Xi Judicial determination of infringement of right to communicate works through information networks by operator’s theft linking behavior of video aggregation platforms[J]. Legal System and Society, 2019, (20): 58- 59
|
|
|
[16] |
LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks [C]// 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. Ann Arbor: ACM, 2018: 95–104.
|
|
|
[17] |
ELMAN J L Finding structure in time[J]. Cognitive science, 1990, 14 (2): 179- 211
doi: 10.1207/s15516709cog1402_1
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|