|
|
Deep learning method for recognizing network-level road traffic state |
Yikai LUO1( ),Yilin XIN2,Jinhua XU1,Guizhen CHEN1,Yan LI1,*( ) |
1. College of Transportation Engineering, Chang’an University, Xi’an 710064, China 2. BYD Automobile Limited Company, Xi’an 710018, China |
|
|
Abstract The research area was divided into spatiotemporal units, and a deep clustering network model that integrated feature extraction and clustering process was constructed based on the trajectory data of online car-hailing to extract relevant operation parameters to identify traffic states in order to accurately, real-time and efficiently grasp the traffic operation state of various areas in the road network. The clustering results were quantified to obtain category labels, and a traffic state identification model was proposed combining integrated learning, Bayesian optimization and light gradient boosting machine. The test results of Xi'an online car-hailing data show that road operation states can be divided into 5 types: smooth, slow, mild congestion, moderate congestion and severe congestion. The proportion of severely congested road sections increases significantly during morning and evening peak periods and decreases during off-peak periods. The proposed clustering model performs better than the comparison models, with the precision, recall, F1-score and accuracy of the traffic state identification model being 0.982 1, 0.984 4, 0.983 3 and 0.983 9 respectively.
|
Received: 27 February 2024
Published: 25 April 2025
|
|
Fund: 国家自然科学基金资助项目(51408049);陕西省自然科学基础研究计划资助项目(2020JM-237). |
Corresponding Authors:
Yan LI
E-mail: lyk@chd.edu.cn;lyan@chd.edu.cn
|
网络级道路交通运行状态的深度学习识别方法
为了精准、实时、高效地掌握道路网各区域交通运行状态,基于网约车轨迹数据提取相关运行参数,对研究区域进行时空单元划分,构建将特征提取与聚类过程融合的深度聚类网络模型,对交通状态进行分类. 对聚类结果量化获取类别标签,结合集成学习、贝叶斯优化和轻量梯度提升机,提出交通状态识别模型. 西安市网约车数据测试的结果表明,道路运行状态可以分为畅通、缓行、轻度拥堵、中度拥堵和严重拥堵5种类型,严重拥堵路段占比在早晚高峰时段明显增加,平峰时段有所减少. 所提聚类模型的效果均优于对比模型,交通状态识别模型计算的精确率、召回率、F1分数和准确率分别为0.982 1、0.984 4、0.983 3、0.983 9.
关键词:
网络级道路,
交通运行状态,
深度聚类,
轨迹数据,
轻量梯度提升机
|
|
[1] |
张琦, 陈红, 周继彪, 等 道路开口对临近交叉口交通安全的影响[J]. 浙江大学学报: 工学版, 2021, 55 (4): 720- 726 ZHANG Qi, CHEN Hong, ZHOU Jibiao, et al Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (4): 720- 726
|
|
|
[2] |
XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// International Conference on Machine Learning . New York: JMLR, 2016: 478-487.
|
|
|
[3] |
黎茂盛, 李杭聪 基于交叉口车牌识别数据的网络交通状态分类方法[J]. 哈尔滨工业大学学报, 2023, 55 (11): 82- 90 LI Maosheng, LI Hangcong Classification method of network traffic state based on electronic police data at intersections[J]. Journal of Harbin Institute of Technology, 2023, 55 (11): 82- 90
|
|
|
[4] |
李岩, 王泰州, 徐金华, 等 面向动态交通分配的交通需求深度学习预测方法[J]. 交通运输系统工程与信息, 2024, 24 (1): 115- 123 LI Yan, WANG Taizhou, XV Jinhua, et al Traffic demand prediction method based on deep learning for dynamic traffic assignment[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (1): 115- 123
|
|
|
[5] |
JAVANI B, BABAZADEH A, CEDRER A Path-based capacity-restrained dynamic traffic assignment algorithm[J]. Transportmetrica B: Transport Dynamics, 2019, 7 (1): 741- 746
doi: 10.1080/21680566.2018.1496861
|
|
|
[6] |
郭璘, 周继彪, 董升, 等 基于改进K-means算法的城市道路交通事故分析[J]. 中国公路学报, 2018, 31 (4): 270- 279 GUO Lin, ZHOU Jibiao, DONG Sheng, et al Analysis of urban road traffic accidents based on improved k-means algorithm[J]. China Journal of Highway and Transport, 2018, 31 (4): 270- 279
|
|
|
[7] |
XU J H, LUO W B, LI Y, et al A multi-directional recurrent graph convolutional network model for reconstructing traffic spatiotemporal diagram[J]. Transportation Letters, 2024, 16 (5): 405- 415
doi: 10.1080/19427867.2023.2198829
|
|
|
[8] |
苏俊杰, 柴干, 季文韬 基于投影寻踪的快速路交织区交通状态识别方法[J]. 交通信息与安全, 2019, 37 (2): 114- 119 SU Junjie, CHAI Gan, JI Wentao Traffic state discrimination method for interchange areas in expressways based on projection pursuit[J]. Journal of Transport Information and Safety, 2019, 37 (2): 114- 119
|
|
|
[9] |
李晓璐, 于昕明, 杜崇, 等 基于权值优化的 FCM-MSVM 算法及其在高速公路状态识别中的应用[J]. 北京交通大学学报, 2018, 42 (4): 72- 78 LI Xiaolu, YU Xinming, DU Chong, et al FCM-MSVM algorithm based on weight optimization and its application in highway state discrimination[J]. Journal of Beijing Jiaotong University, 2018, 42 (4): 72- 78
|
|
|
[10] |
LIU J, KHATTAK A J Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles[J]. Transportation Research Part C: Emerging Technologies, 2016, 68 (3): 83- 100
|
|
|
[11] |
XU J H, LI Y R, LU W, et al A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction[J]. Physica A: Statistical Mechanics and its Applications, 2024, 641: 129746
doi: 10.1016/j.physa.2024.129746
|
|
|
[12] |
丁瑞, 刘俊, 蒋艳, 等 基于车辆加速度数据的互通立交匝道驾驶风险分析[J]. 交通信息与安全, 2021, 39 (1): 17- 25 DING Rui, LIU Jun, JIANG Yan, et al Driving risks of interchange ramps based on vehicle acceleration data[J]. Journal of Transport Information and Safety, 2021, 39 (1): 17- 25
|
|
|
[13] |
张鑫, 张卫华 快速路合流区主线不同交通状态下的安全性分析[J]. 吉林大学学报: 工学版, 2022, 52 (6): 1308- 1314 ZHANG Xin, ZHANG Weihua Safety analysis of main line under different traffic conditions in expressway confluence area[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (6): 1308- 1314
|
|
|
[14] |
ZENG Q, GUO Q, WONG S C, et al Jointly modeling area-level crash rates by severity: a Bayesian multivariate random-parameters spatio-temporal Tobit regression[J]. Transportmetrica A: Transport Science, 2019, 15 (2): 1867- 1884
doi: 10.1080/23249935.2019.1652867
|
|
|
[15] |
李岩, 曾明哲, 朱才华, 等 基于多点线圈联合数据的高速公路匝道影响范围识别[J]. 交通运输系统工程与信息, 2022, 22 (3): 53- 62 LI Yan, ZENG Mingzhe, ZHU Caihua, et al Identification of freeway ramp influence areas based on multi-point loop data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 53- 62
|
|
|
[16] |
张存保, 彭汉辉, 张珊, 等 雾天高速公路实时交通安全状态评价方法[J]. 中国安全科学学报, 2017, 27 (4): 110- 115 ZHANG Cunbao, PENG Hanhui, ZHANG Shan, et al Real-time traffic safety evaluation method for freeway in fog[J]. China Safety Science Journal, 2017, 27 (4): 110- 115
|
|
|
[17] |
MALIN F, NORROS I, INNAMAA S Accident risk of road and weather conditions on different road types[J]. Accident Analysis and Prevention, 2019, 122 (2): 181- 188
|
|
|
[18] |
吴兵, 翟犇, 卢建涛, 等 基于安全风险的恶劣天气下高速公路建议车速确定方法[J]. 同济大学学报: 自然科学版, 2020, 48 (11): 1570- 1578 WU Bing, ZHAI Ben, LU Jiantao, et al Determination of freeway recommended speed based on safety risk under adverse weather conditions[J]. Journal of Tongji University: Natural Science, 2020, 48 (11): 1570- 1578
|
|
|
[19] |
吕能超, 彭凌枫, 吴超仲, 等 基于视频轨迹参数的边缘率减速标线驾驶行为效果评价方法[J]. 安全与环境学报, 2021, 21 (2): 461- 469 LV Nengchao, PENG Lingfeng, WU Chaozhong, et al Valuative judgment of the driving behaviors of the edge rate deceleration bars based on the video trajectory parameters[J]. Journal of Safety and Environment, 2021, 21 (2): 461- 469
|
|
|
[20] |
YUAN J, ABDELATY M, WANG L, et al Utilizing bluetooth and adaptive signal control data for real-time safety analysis on urban arterials[J]. Transportation Research Part C: Emerging Technologies, 2018, 97 (5): 114- 127
|
|
|
[21] |
杨飞, 姜海航, 刘好德, 等 基于GPS轨迹数据的不同交通状态下交通方式识别流程优化方法[J]. 交通运输系统工程与信息, 2020, 20 (4): 83- 89 YANG Fei, JIANG Haihang, LIU Haode, et al Procedure optimization method based on GPS trajectory data for transportation mode recognition under different traffic conditions[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 83- 89
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|