Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (5): 1031-1039    DOI: 10.3785/j.issn.1008-973X.2025.05.016
    
Comparative study of plane strain and axisymmetric model in reciprocating seal
Chao PENG1(),Xin ZHANG1,Sibo JIN1,Liang YANG1,Tao HE2,*(),Xiaoping OUYANG3
1. School of Ocean Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2. School of Intelligent Systems Engineering, Sun Yat-sen University·Shenzhen, Shenzhen 518107, China
3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2366KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The macroscopic and microscopic sealing characteristics of the plane strain model and the axisymmetric model were analyzed aiming at the problems of the unclear differences in computational results between the two models in reciprocating seal studies. The fluid domain model, microscopic contact model, and deformation equations of the sealing interface during reciprocating motion were solved by using a numerical iterative approach. A detailed comparison was conducted between the two modeling methods in terms of contact pressure, oil film pressure, and friction-induced leakage under a macroscopic zero tensile strain condition. Results show that both models exhibit similar computational trends and yield comparable leakage rates. However, the static contact pressure, oil film pressure, and friction force obtained from the plane strain model are lower than those from the axisymmetric model, as the plane strain model does not account for the negative tensile effect during the compression process.



Key wordsreciprocating seal      plane strain model      axisymmetric model      negative stretching effect     
Received: 12 June 2024      Published: 25 April 2025
CLC:  TP 137  
Fund:  国家重点研发计划资助项目(2022YFC2806504);国家自然科学基金资助项目(52305083);广东省基础与应用基础研究基金资助项目(2023A1515012042);航空科学基金资助项目(2022Z0270M1004);中山大学中央高校基本科研业务费专项资金资助项目(241gqb008);深圳市科技计划资助项目(JCYJ20220530145609021).
Corresponding Authors: Tao HE     E-mail: pengch85@mail.sysu.edu.cn;hetao29@mail.sysu.edu.cn
Cite this article:

Chao PENG,Xin ZHANG,Sibo JIN,Liang YANG,Tao HE,Xiaoping OUYANG. Comparative study of plane strain and axisymmetric model in reciprocating seal. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1031-1039.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.05.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I5/1031


往复密封平面应变模型与轴对称模型对比研究

针对往复密封研究中平面应变模型与轴对称模型计算结果差异不明的问题,研究2种模型的宏微观密封特性. 通过数值迭代计算的方法,求解往复作动中密封界面的流体域模型、微观接触模型和变形方程,在宏观零拉伸率的条件下,详细对比2种建模方法的接触压力、油膜压力和摩擦泄漏等密封特性的计算结果差异. 研究结果表明,2种模型的计算结果趋势相同,计算所得的泄漏量较接近,但利用平面应变模型计算得到的静态接触压力、油膜压力、摩擦力均小于轴对称模型,原因是平面应变模型未考虑压缩过程中的负拉伸效应.


关键词: 往复密封,  平面应变模型,  轴对称模型,  负拉伸效应 
Fig.1 Essential expression of planar element
Fig.2 Load expression diagram of axisymmetric element
Fig.3 Schematic of essential expression of axisymmetric element
Fig.4 Structure diagram of hydraulic cylinder
Fig.5 Schematic diagram of compression ratio definition
参数数值
密封材料聚氨酯
弹性模量E/MPa49
截面直径d/mm1.708
穆尼-瑞林系数/MPa0.202、6.958
密封内径DSeal/mm无拉伸:25.35
沟槽底径DGroove/mm28.08/28.21/28.42/28.60
活塞杆直径DRod/mm25.35
表面粗糙度Ra/μm1.6
往复行程长度L/mm100
速度u/ (m·s?1)0.1
经验摩擦系数 f0.2
参考黏度 μ0/ (Pa·s)0.038 7
Tab.1 Basic parameter of O-ring seal, groove, rod and fluid
Fig.6 Macro and micro characteristic of reciprocating seal
Fig.7 Three-dimensional model of O-ring seal
Fig.8 FEA 2D model for O-ring seal
Fig.9 Numerical calculation process of fluid-structure interaction for reciprocating seal
Fig.10 Comparison of contact pressure calculation between 2D axisymmetric model, plane strain model and 3D solid model
Fig.11 Contact pressure distribution under different compression ratio (axisymmetric model)
Fig.12 Internal stress distribution under different compression ratio (axisymmetric model)
Fig.13 Contact pressure distribution under different compression ratio (plane model)
Fig.14 Internal stress distribution under different compression ratio (plane model)
Fig.15 Static contact pressure at different compression ratio
Fig.16 Static contact pressure at different pressure with same compression ratio of 16%
Fig.17 Microscopic sealing characteristics under different compression ratio
Fig.18 Friction and leakage under different compression ratios calculated by two models
[1]   OLSEN R B. Dynamic seals for advanced hydraulic systems [R]. Dallas TX: Vought Corp, 1981.
[2]   彭超. 多工况往复密封跨尺度建模及试验研究[D]. 杭州: 浙江大学, 2019.
PENG Chao. Trans-dimensional modelling and experimental study for reciprocating seals under multi- working conditions [D]. Hangzhou: Zhejiang University, 2019.
[3]   郭媛, 吴凛, 许浩, 等 格莱圈动密封性能分析及密封参数优化[J]. 润滑与密封, 2021, 46 (3): 17- 25
GUO Yuan, WU Lin, XU Hao, et al Analysis of dynamic sealing performance of Glyd ring and optimization of parameters[J]. Lubrication Engineering, 2021, 46 (3): 17- 25
[4]   蔡智媛, 王冰清, 彭旭东, 等 基于2种预压缩模型的格莱圈静密封性能[J]. 上海交通大学学报, 2019, 53 (11): 1359- 1366
CAI Zhiyuan, WANG Bingqing, PENG Xudong, et al Static sealing performance of Glyd-ring seal with two precompression models[J]. Journal of Shanghai Jiaotong University, 2019, 53 (11): 1359- 1366
[5]   徐璁, 陆浩, 周毅博, 等 氟硅橡胶与氟橡胶O形圈密封性能仿真[J]. 航空发动机, 2019, 45 (5): 48- 52
XU Cong, LU Hao, ZHOU Yibo, et al Simulation of sealing performance of fluorosilicone rubber O-ring and fluoro rubber O-ring[J]. Aeroengine, 2019, 45 (5): 48- 52
[6]   刘凤麒, 刘晓玲, 周江敏, 等 滑环圆角半径对液压往复格莱圈接触压力的影响[J]. 润滑与密封, 2019, 44 (11): 61- 66
LIU Fengqi, LIU Xiaoling, ZHOU Jiangmin, et al Influence of slip ring radius on contact pressure of hydraulic reciprocating Glyd-ring[J]. Lubrication Engineering, 2019, 44 (11): 61- 66
[7]   张妙恬, 李德才, 索双富, 等 基于斯特封的飞机作动器主密封有限元分析[J]. 液压与气动, 2021, 45 (4): 40- 48
ZHANG Miaotian, LI Decai, SUO Shuangfu, et al Finite element analysis of aircraft actuator’s main seal based on Sterling seal[J]. Chinese Hydraulics and Pneumatics, 2021, 45 (4): 40- 48
[8]   PENG C, OUYANG X, ZHU Y, et al Investigation into the influence of stretching on reciprocating rod seals based on a novel 3-D model vs axisymmetric model[J]. Tribology International, 2018, (117): 1- 14
[9]   欧阳小平, 刘玉龙, 薛志全, 等 航空作动器O形密封材料失效分析[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1361- 1367
OUYANG Xiaoping, LIU Yulong, XUE Zhiquan, et al Analysis of material fault of O-ring seal in aircraft cylinder[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1361- 1367
[10]   王冰清, 李晓暄, 彭旭东, 等 宽温高湿环境下油水两相O形液压杆封性能分析[J]. 润滑与密封, 2025, 50 (1): 1- 10
WANG Bingqing, LI Xiaoxuan, PENG Xudong, et al Performance analysis of oil-water two-phase O-ring hydraulic rod seals under the wide-temperature high-humidity environments[J]. Lubrication Engineering, 2025, 50 (1): 1- 10
[11]   WANG B, LI X, PENG X, et al Influence of nitrile butadiene rubber (nbr) shore hardness and polytetrafluoroethylene (ptfe) elastic modulus on the sealing characteristics of step rod seals[J]. Lubricants, 2023, 11 (9): 367
doi: 10.3390/lubricants11090367
[12]   LI Xiaoxuan, WANG Bingqing, PENG Xudong, et al Effect of nitrile butadiene rubber hardness on the sealing characteristics of hydraulic O-ring rod seals[J]. Journal of Zhejiang University: Science A, 2024, 25 (1): 63- 79
doi: 10.1631/jzus.A2200612
[13]   PENG C, MIAO J, BAUER N, et al Investigation into the inter-lip characteristics of combined seals with double lips in different working conditions[J]. Tribology International, 2023, (178): 108036
[14]   彭超, 谭爽, 叶强, 等. 作动器差动连接下双唇级联靴形往复密封特性研究[EB/OL]. [2024-06-05]. https://bhxb.buaa.edu.cn/bhzk/cn/article/doi/10.13700/j.bh.1001-5965.2023.0779.
[15]   ANSYS Inc. Ansys mechanical user’s guide (Release 2023 R1). [2024-06-05]. https://ansyshelp.ansys.com/Views/Secured/corp/v232/en/wb_sim/ds_2d_simulations.html?q=axisymmetric.
[16]   PENG C, OUYANG X, SCHMITZ K, et al Numerical and experimental study on combined seals with the consideration of stretching effects[J]. Journal of Tribology, 2021, 143 (6): 062301
doi: 10.1115/1.4048496
[17]   PAYVAR P, SALANT R F A computational method for cavitation in a wavy mechanical seal[J]. Journal of Tribology, 1992, 114 (1): 199- 204
doi: 10.1115/1.2920861
[18]   PATIR N, CHENG H An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100 (1): 12- 17
doi: 10.1115/1.3453103
[19]   CARPICK R W The contact sport of rough surfaces[J]. Science, 2018, 359 (6371): 38
doi: 10.1126/science.aaq1814
[20]   GREENWOOD J A, TRIPP J The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1970, 185 (1): 625- 633
[1] OUYANG Xiao ping, XUE Zhi quan, PENG Chao, ZHOU Qing he, YANG Hua yong. Performance analysis on VL seal in aircraft cylinder[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1755-1761.