Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 433-441    DOI: 10.3785/j.issn.1008-973X.2025.02.021
    
Application of novel multi-amplitude coding in remodulated passive optical network
Wenhao QIU1(),Yang LU1,*(),Liang CHENG2,Chen YAO1,Yanrong ZHAI1,Meihua BI1
1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310016, China
2. Zhongxun Post andTelecommunications Consulting Design Institute, Shanghai 200050, China
Download: HTML     PDF(1968KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Two novel multi-amplitude coding formats (PAM complement coding and amplitude-variable line-coding) were proposed in order to realize colorless ONUs in wavelength division multiplexing passive optical network (WDM PON) which used remodulation technology. The novel coding formats combined the spectrum shaping coding and pulse amplitude modulation (PAM). Spectrum shaping coding suppressed the low frequency component of downstream signal and reduced the crosstalk of downstream signal to the remodulated upstream signal. The high order PAM can improve the coding efficiency of the signal, and the downstream signal which used the high order PAM can be received by the traditional binary receiver. The feasibility of the proposed coding scheme in remodulated WDM PON was verified by simulation. The performance of the 625 Mb/s and 1.25 Gb/s upstream signals remodulated on 10 Gb/s downstream signal was tested. The remodulated WDM PON scheme based on the novel coding formats can reduce the crosstalk of the upstream remodulated signal and improve the coding efficiency of the downstream signal.



Key wordspassive optical network      colorless optical network unit      remodulation      multi-amplitude coding      code efficiency     
Received: 20 December 2023      Published: 11 February 2025
CLC:  TN 915  
Fund:  杭州电子科技大学研究生科研创新基金资助项目(CXJJ2023136).
Corresponding Authors: Yang LU     E-mail: 1178927762@qq.com;luyang@hdu.edu.cn
Cite this article:

Wenhao QIU,Yang LU,Liang CHENG,Chen YAO,Yanrong ZHAI,Meihua BI. Application of novel multi-amplitude coding in remodulated passive optical network. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 433-441.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.021     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/433


新型多幅度编码在再调制无源光网络中的应用

为了在使用再调制技术的波分复用无源光网络(WDM PON)中实现透明光网络单元(colorless ONU),提出2种新型的多幅度编码方式(PAM补码和可变幅线路编码). 新的编码方式结合了频谱整形编码和脉冲幅度调制(PAM). 频谱整形编码能够抑制下行信号的低频分量,减少下行信号对上行再调制信号的串扰. 高阶的PAM能够提高信号的编码效率,采用高阶PAM的下行信号可以被传统的二进制接收机接收. 通过仿真验证了所提编码方式在再调制WDM PON中应用的可行性,测试了速率为625 Mb/s和1.25 Gb/s的上行信号再调制在速率为10 Gb/s的下行信号上的性能. 基于新型多幅度编码的再调制WDM PON方案能够减少上行再调制信号遭受的串扰,提高下行信号的编码效率.


关键词: 无源光网络,  透明光网络单元,  再调制,  多幅度编码,  编码效率 
Fig.1 System framework of remodulated WDM PON based on new coding mode
Fig.2 Upstream signal receiving process in remodulated PON system       
Fig.3 Coding schematic of PCC based on PAM4
Fig.4 Eye diagram of upstream signal remodulated on PCC signal under same attenuation
Fig.5 Coding schematic of AVLC
Fig.6 Code pattern of sequence “100011000101” in different coding format
Fig.7 Simulation scheme of remodulated WDM PON based on novel multi-amplitude coding
参数数值
LD 发射频率/THz193.1
LD 发射功率/dBm7
NRZ脉冲生成器的上升沿和下降沿/bit0.1
Mach-Zehnder调制器的调制指数/dB14
光纤长度/km25
光纤衰减系数/(dB·km?1)0.2
光纤色散系数/(ps·nm?1·km?1)16.75
下行接收滤波器的截止频率下行发射速率×0.75
上行接收滤波器的截止频率上行发射速率×0.75
Tab.1 Simulation parameter in remodulated WDM PON simulation system
Fig.8 Spectrum of 10 Gb/s downstream signal after different encoding
Fig.9 Collection of eye image at different code and different rate
Fig.10 Bit error rate curve of different coded signal
Fig.11 Bit error rate curve for 100 Gb/s downstream signal and 12.5 Gb/s upstream signal
[1]   CHUNG H S, LEE H H, KIM K, et al TDM-PON-based optical access network for tactile Internet, 5G, and beyond[J]. IEEE Network, 2022, 36 (2): 76- 81
doi: 10.1109/MNET.008.2100641
[2]   PFEIFFER T, DOM P, BIDKAR S, et al PON going beyond FTTH [invited tutorial][J]. Journal of Optical Communications and Networking, 2022, 14 (1): A31- A40
doi: 10.1364/JOCN.439241
[3]   BONK R, GENG D, KHOTIMSKY D, et al 50G-PON: the first ITU-T higher-speed PON system[J]. IEEE Communications Magazine, 2022, 60 (3): 48- 54
[4]   HORVATH T, MUNSTER P, OUJEZSKY V, et al Passive optical networks progress: a tutorial[J]. Electronics, 2020, 9 (7): 1081
doi: 10.3390/electronics9071081
[5]   WEY J S The outlook for PON standardization: a tutorial[J]. Journal of Lightwave Technology, 2020, 38 (1): 31- 42
doi: 10.1109/JLT.2019.2950889
[6]   VEEN V D, HOUTSMA V Strategies for economical next-generation 50G and 100G passive optical networks[J]. Journal of Optical Communications and Networking, 2020, 12 (1): A95- A103
doi: 10.1364/JOCN.12.000A95
[7]   KOURTESSIS P, LIM W, MERAYO N, et al Efficient T-CONT-agnostic bandwidth and wavelength allocation for NG-PON2[J]. Journal of Optical Communications and Networking, 2019, 11 (7): 383- 396
doi: 10.1364/JOCN.11.000383
[8]   ZHANG Z, LIU N, JU C, et al IMDD-based bidirectional 20 Gb/s/λ WDM-PON with Nyquist 4 PAM employing Rayleigh backscattering noise detection-based self wavelength management[J]. Optical and Quantum Electronics, 2016, 48 (3): 210.1- 210.12
[9]   ZHANG Z, ZHANG B, JU C, et al Bidirectional 50 Gb/s/λ WDM-PON based on optical intensity modulation and direct detection[J]. Optical and Quantum Electronics, 2016, 48 (10): 1- 13
[10]   WANG R, FAN Y, QIN S, et al Bidirectional colorless WDM-PON RoF system with large spurious free dynamic range[J]. Journal of Optical Communications and Networking, 2022, 14 (5): 389- 397
[11]   XU W, HUANG L, XU Y, et al SOA Assisted wavelength reusing for 25G colorless PON with low-cost 10G EAM[J]. IEEE Photonics Journal, 2022, 14 (3): 7931005- 7931005
[12]   FENG Q, LI W, WANG Y, et al Colorless long-reach duplex WDM-PON with Rayleigh backscattering noise mitigation using orthogonal codes[J]. Journal of Lightwave Technology, 2016, 34 (3): 845- 853
doi: 10.1109/JLT.2016.2515623
[13]   SPREM M, BABIC D Wavelength reuse WDM-PON using RSOA and modulation averaging[J]. Optics Communications, 2019, 451: 1- 5
doi: 10.1016/j.optcom.2019.06.024
[14]   CELINO R D, DUARTE R U, ROMERO A M Improved self-seeding and carrier remodulation performance for WDM-PON by means of double RSOA erasure[J]. Optics Communications, 2020, 459: 1- 20
[15]   NACAR N C, MURAT A Data erasure analysis of FPLD based on remodulation bidirectional PON system[J]. Journal of Modern Optics, 2020, 67 (2): 139- 145
[16]   NACAR N C, MURAT A Data erasure in Fabry–Perot diode lasers: effects of facet reflectivity[J]. Journal of Modern Optics, 2020, 67 (6): 515- 522
doi: 10.1080/09500340.2020.1759716
[17]   XU J, QIU Y, DENG N Optical phase remodulation for Rayleigh noise mitigation in 10 Gb/s/channel WDM passive optical networks[J]. Chinese Optics Letters, 2017, 15 (6): 40- 44
[18]   LU Y, BI M, HU M, et al Orthogonal modulation application to achieve flexible migration and colorless ONUs for next generation PON[J]. Optics Communications, 2017, 403: 252- 256
doi: 10.1016/j.optcom.2017.07.060
[19]   汪胜蕾. 基于线路编码和RSOA上行再调制的WDM-PON系统研究[D]. 杭州: 浙江大学, 2013.
WANG Shenglei. Study on WDM-PON system based on line coding and uplink re-modulation with RSOA [D]. Hangzhou: Zhejiang University, 2013.
[20]   HOUTSMA E V, VEEN V T D Investigation of modulation schemes for flexible line-rate high-speed TDM-PON[J]. Journal of Lightwave Technology, 2020, 38 (12): 3261- 3267
[21]   LU Y, HUANG G, BI M, et al Flexible migration and colorless ONUs for future PON based on simple line-coding[J]. Optical Fiber Technology, 2019, 49: 57- 63
doi: 10.1016/j.yofte.2019.02.002
[1] Lu-fang CAO,Yang LU,Yao-yao WANG,Mei-hua BI,Miao HU,Yan-rong ZHAI. Smooth migration for passive optical networks based on Manchester-PAM4 modulation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2507-2513.