Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 423-432    DOI: 10.3785/j.issn.1008-973X.2025.02.020
    
High quality modulation technology without narrow pulse for three level ultra-low frequency transmitter
Guopeng ZHANG1,2(),Yuan MA1,2,*(),Haijun TAO1,Xingguo TAN1,Zhuo CHEN3
1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China
2. Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Jiaozuo 454003, China
3. Research Department of Renewable Generation System, Institute of Electrical Engineering of the Chinese Academy of Sciences, Beijing 100190, China
Download: HTML     PDF(1863KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The influence of modulation ratio, carrier frequency, and dead time on narrow pulses was analyzed aiming at the narrow pulse problem of single-phase midpoint clamp type (NPC) three-level ultra-low frequency digital transmitter. The distribution law of narrow pulses in NPC three-level transmitter was obtained. A high-frequency inverse modulation method without narrow pulses was proposed, which eliminated the narrow pulses near the modulation peaks, valleys, and zero crossings. The digital implementation of the method and the waveform distortion issues caused by modulation peaks, valleys, and near zero crossings were explored. A three beat carrier prediction method was proposed to solve the harmonic problem caused by narrow pulse elimination strategy, and the output waveform quality without narrow pulse modulation was ensured. The proposed method was validated for eliminating narrow pulses during high-frequency modulation on the constructed experimental platform. The waveform quality near the current zero crossing was improved by three beat carrier prediction, and traditional narrow pulse elimination modulation methods were added for comparative experiments. The proposed strategy can significantly improve the waveform quality of the inverted modulation output at different modulation ratios and carrier frequencies.



Key wordsthree level      single-phase inverter      ultra-low frequency      narrow pulse      waveform quality      high-frequency inverse     
Received: 15 December 2023      Published: 11 February 2025
CLC:  TM 919  
Fund:  国家自然科学基金资助项目(52267018);河南省高校基本科研业务费专项资金资助项目(NSFRF210423).
Corresponding Authors: Yuan MA     E-mail: hpoyz@163.com;862168095@qq.com
Cite this article:

Guopeng ZHANG,Yuan MA,Haijun TAO,Xingguo TAN,Zhuo CHEN. High quality modulation technology without narrow pulse for three level ultra-low frequency transmitter. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 423-432.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.020     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/423


三电平特低频发射机无窄脉冲高质量调制技术

针对单相中点钳位型(NPC)三电平特低频数字发射机的窄脉冲问题,分析调制比、载波频率和死区时间对窄脉冲的影响,得到NPC三电平发射机窄脉冲的分布规律. 提出无窄脉冲的高频逆变调制方法,消除了调制波峰、谷值及过零点附近的窄脉冲. 探讨该方法的数字化实现以及该方法导致的调制波峰谷值和过零点附近的波形畸变问题,提出三拍载波的预测方法,解决了窄脉冲消除策略导致的谐波问题,保障了无窄脉冲调制的输出波形质量. 在搭建的实验平台上,验证了所提方法在高频调制过程中对窄脉冲的消除. 三拍载波预测改善了调制在电流过零点附近的波形质量,加入了传统窄脉冲消除的调制方法,进行对比实验. 所提策略在不同的调制比和载波频率下均可以大幅提升逆变调制输出的波形质量.


关键词: 三电平,  单相逆变器,  特低频,  窄脉冲,  波形质量,  高频逆变 
Fig.1 Topology diagram of single-phase NPC three-level inverter
Fig.2 Carrier in-phase stacked modulation
Fig.3 Original control signal generation diagram of Sa3
窄脉冲区发生条件
顶部窄脉冲区u1(t)>Vc(1?tmin/Ts)
过零窄脉冲区Vctmin/Tsu1(t)>?Vctmin/Ts
底部窄脉冲区u1(t) < Vc(tmin/Ts?1)
Tab.1 Condition for narrow pulse generation in carrier in-phase stacked modulation
Fig.4 Control signals with dead time incorporated
窄脉冲区发生条件
顶部窄脉冲区u1(t)>Vc[1?(tmin+tDB)/Ts]
过零窄脉冲区Vc(tmin+tDB)/Tsu1(t)>?Vc(tmin+tDB)/Ts
底部窄脉冲区u1(t) < Vc((tmin+tDB)/Ts?1)
Tab.2 Narrow pulse occurrence condition in carrier in-phase stacked modulation with dead time insertion
Fig.5 Narrow pulse-free modulation strategy
Fig.6 Digital implementation diagram of narrow pulse-free modulation
Fig.7 Schematic diagram of in-phase carrier digital modulation
Fig.8 Zero-crossing narrow pulse zone carrier strategy
窄脉冲区发生条件
条件1θ(k) < 180°
条件2θ(k+3) ≤ 180°
条件3θ(k) ≤ 360°
Tab.3 Crossing determination of narrow pulse zone
窄脉冲区发生条件
条件1θ(k) < 180°
条件2θ(k+3) ≤ 180°
条件3θ(k) ≤ 360°或θ(k) ≥ 270°
Tab.4 Crossing determination of top and bottom narrow pulse zone
Fig.9 Experimental platform of single-phase NPC three-level inverter     
参数数值
Udc/V350
fc/kHz200
fm/kHz2
ton/μs1
tDB/μs0.5
M0.30~0.95
Tab.5 Parameter of inverter
Fig.10 Comparison diagram of driving signal in narrow pulse region of Sa1, Sa2 and Sa3
Fig.11 Comparison of output waveform of M = 0.9 inverter
Fig.12 Comparison of output waveform of M = 0.3 inverter
Fig.13 THD comparison curve between io and modulation index
Fig.14 THD comparison curve of io and carrier frequency
Fig.15 THD comparison curve of io at various modulation wave frequency
[1]   杨益新, 韩一娜, 赵瑞琴, 等 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26 (5): 369- 386
YANG Yixin, HAN Yina, ZHAO Ruiqin, et al Current status and development trends of marine acoustic target detection technology[J]. Journal of Underwater Unmanned Systems, 2018, 26 (5): 369- 386
[2]   解静怡. 低频功率放大器的研究与设计[D]. 保定: 河北大学, 2016.
JIE Jingyi. Research and design of low frequency power amplifiers [D]. Baoding: Hebei University, 2016.
[3]   王康梁. 大功率数字功率放大器的控制方法研究及装备研制[D]. 长沙: 湖南大学, 2020.
WANG Kangliang. Research on control methods and equipment development of high power digital power amplifiers [D]. Changsha: Hunan University, 2020.
[4]   HU Jia, XU Qianming, PENG Guo, et al. Zero-voltage switching differential switching power amplifier with power decoupling control independent of output frequency [C]// IEEE International Power Electronics and Application Conference and Exposition. Guangzhou: IEEE, 2022: 9959203.
[5]   CHENG Tang, PENG Guo, QIAN Mingxu, et al. Collaborative model predictive control for high-frequency hybrid power amplifiers with high efficiency and low THD [C]// IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics. Wuhan: IEEE, 2023: 1-6.
[6]   NIKLAUS P S , KOLAR J W, BORTIS D, et al 100 kHz large-signal bandwidth GAN-based 10 kVA class-D power amplifier with 4.8 MHz switching frequency[J]. IEEE Transactions on Power Electronics, 2023, 38 (2): 2307- 2326
doi: 10.1109/TPEL.2022.3213930
[7]   席明湘. 大功率级联型数字功率放大器的研究及装备研制[D]. 长沙: 湖南大学, 2020.
XI Mingxiang. Research and equipment development of high-power cascaded digital power amplifiers [D]. Changsha: Hunan University, 2020.
[8]   BÖHLER J, HUBER J, WURZ J, et al Ultra-high-bandwidth power amplifiers: a technology overview and future prospects[J]. IEEE Access, 2022, 10: 54613- 54633
doi: 10.1109/ACCESS.2022.3172291
[9]   薄保中, 刘卫国, 罗兵, 等 三电平逆变器窄脉冲补偿方法研究[J]. 电力自动化设备, 2004, 24 (8): 25- 28
BO Baozhong, LIU Weiguo, LUO Bing, et al Study of narrow pulse width compensation technique for three-level inverters[J]. Electric Power Automation Equipment, 2004, 24 (8): 25- 28
doi: 10.3969/j.issn.1006-6047.2004.08.007
[10]   李敏裕, 马晓军, 魏曙光, 等 三电平虚拟空间矢量脉宽调制算法窄脉冲抑制研究[J]. 电工技术学报, 2018, 33 (14): 3264- 3273
LI Minyu, MA Xiaojun, WEI Shuguang, et al Research on narrow pulse suppression of three-level virtual space vector pulse width modulation algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33 (14): 3264- 3273
[11]   李文善, 温旭辉, 张剑, 等 高频三电平低调制比区窄脉冲抑制混合调制策略[J]. 电机与控制学报, 2021, 25 (12): 116- 126
LI Wenshan, WEN Xuhui, ZHANG Jian, et al Narrow pulse suppression of high frequency three level converter based on hybrid modulation strategy in low modulation index region[J]. Electric Machines and Control, 2021, 25 (12): 116- 126
[12]   肖宏伟, 何英杰, 刘进军 基于窄脉冲消除的三电平逆变不对称死区补偿调制策略研究[J]. 中国电机工程学报, 2021, 41 (4): 1386
XIAO Hongwei, HE Yingjie, LIU Jinjun Research on asymmetric dead zone compensation modulation strategy for three level inverters based on narrow pulse elimination[J]. Chinese Journal of Electrical Engineering, 2021, 41 (4): 1386
[13]   薄保中, 刘卫国, 苏彦民 三电平逆变器PWM控制窄脉冲补偿技术的研究[J]. 中国电机工程学报, 2005, 25 (10): 60- 64
BO Baozhong, LIU Weiguo, SU Yanmin Study of compensating technique in pwm control for three-level inverters[J]. Proceedings of the Chinese Society for Electrical Engineering, 2005, 25 (10): 60- 64
doi: 10.3321/j.issn:0258-8013.2005.10.012
[14]   RAN W, MA L, LIN F, et al. Zero-sequence voltage injection for narrow pulse compensation and neutral point potential balancing of NPC inverter [C]// IEEE 6th International Power Electronics and Motion Control Conference . Wuhan: IEEE, 2009: 887-891.
[15]   GUAN B, WANG C C. A narrow pulse compensation method for neutral-point-clamped three-level converters considering neutral-point balance [C]// 9th International Conference on Power Electronics and ECCE Asia. Seoul: [s.n.], 2015: 2770-2775.
[16]   WANG D F, WANG M Y, SHEN Y L, et al Online feedback dead time compensation strategy for three-level T-type inverters[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (9): 7260- 7268
doi: 10.1109/TIE.2019.2942558
[17]   HWANG Seonhwan, KIM Jangmok Dead time compensation method for voltage-fed PWM inverter[J]. IEEE Transactions on Energy Conversion, 2010, 25 (1): 1- 10
doi: 10.1109/TEC.2009.2031811
[18]   李璐. 基于DSP的SPWM调制实现方法[J]. 硅谷, 2011(4): 75, 108.
LI Lu. Implementation method of SPWM modulation based on DSP [J]. Silicon Valley , 2011(4): 75, 108.
[19]   TAJUDDIN M F N, GHAZALI N H, DAUT I, et al. Implementation of DSP based SPWM for single phase inverter [C]// SPEEDAM 2010 . Pisa: [s.n.], 2010: 1129-1134.
[1] HE Wen, ZHENG Jian-yi, YU Mei, SHEN Run-jie, JIA Shu-shi. Anti-tension technology of slipway in long-stroke horizontal
vibration table
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1922-1926.