Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2406-2416    DOI: 10.3785/j.issn.1008-973X.2024.11.022
    
Dead band effect and compensation for return-free power control of dual active bridge
Guopeng ZHANG1,2(),Chuangchuang JIANG1,2,Haijun TAO1,Zhuo CHEN3
1. College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China
2. Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Henan Polytechnic University, Jiaozuo 454003, China
3. Research Department of Renewable Generation System, Institute of Electrical Engineering of the Chinese Academy of Sciences, Beijing 100190, China
Download: HTML     PDF(3254KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dead band compensation strategy for CTPS control was proposed aiming at the problem that the occurrence of return power as well as the failure of soft switching was caused after the addition of bridge arm dead band to the triple phase-shift cooperative control (CTPS) of dual active bridge (DAB) converter. The coupling relationships between different mode shift ratios and the power transfer model and the switching conditions of CTPS control modes were corrected based on the principle of return power generation by analyzing the changes of transformer primary and secondary side voltages and leakage currents caused by the dead band of the bridge arm in different modes of CTPS control. Then the effective control of the impact of dead band on CTPS control was realized. The proposed compensation scheme suppressed the return power caused by the dead band, restored the soft-switching performance of the CTPS control, and had better current stress than before compensation. Experiments before and after dead band compensation were conducted separately to verify the analysis of the dead band effects and the proposed compensation strategy.



Key wordsdual active bridge converter      CTPS control      return power      soft-switching      dead band compensation     
Received: 03 July 2023      Published: 23 October 2024
CLC:  TM 46  
Fund:  国家自然科学基金资助项目(52267018);河南省高校基本科研业务费专项资金资助项目(NSFRF210423).
Cite this article:

Guopeng ZHANG,Chuangchuang JIANG,Haijun TAO,Zhuo CHEN. Dead band effect and compensation for return-free power control of dual active bridge. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2406-2416.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.022     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2406


双有源桥无回流功率控制的死区影响与补偿

针对三重移相协同控制(CTPS)加入桥臂死区后,会导致双有源桥(DAB)变换器回流功率发生及软开关失效的问题,提出针对CTPS控制的死区补偿策略. 通过分析CTPS控制不同模式下桥臂死区引起的变压器原副边电压及漏感电流的变化,基于回流功率产生的原理,更正了不同模式移相比之间的耦合关系,对功率传输模型及CTPS控制模式的切换条件进行修正,实现了死区对CTPS控制影响的有效控制. 利用所提的补偿方案,抑制了由死区引起的回流功率,恢复了CTPS控制的软开关性能,具有较补偿前更优的电流应力. 分别开展死区补偿前、后的实验,对死区影响的分析和所提出的补偿策略进行验证.


关键词: 双有源桥变换器,  CTPS控制,  回流功率,  软开关,  死区补偿 
Fig.1 Topology of dual-active-bridge converter
Fig.2 Operating waveform of CTPS control strategy
模式控制策略
Dφ = D2模式$ {D_1} = \dfrac{{{k^2}}}{{{k^2}+k+1}} - \dfrac{k}{{{k^2}+k+1}}\sqrt {1 - \dfrac{{{p_{{\text{av}}}}({k^2}+k+1)}}{{2k}}} $
$ D_{0}=D_{2}=1+k\left(D_{1}-1\right) $
$ D_{1} \in\left[\dfrac{k-1}{k}, \dfrac{k^{2}}{k^{2}+k+1}\right] $
$ p_{{\mathrm{av}}}=\dfrac{2 k}{k^{2}+k+1}-2\left(k^{2}+k+1\right)\left(D_{1}-\dfrac{k^{2}}{k^{2}+k+1}\right)^{2} $
Dφ = 0模式$ {D_1} = 1 - \sqrt {{p_{{\text{av}}}}/(2k - 2)} $
$ D_{2}=1+k\left(D_{1}-1\right), D_{\varphi}=0 $
$ D_{1} \in\left[\dfrac{k-1}{k}, 1\right] $
$ p_{{\mathrm{av}}}=2(k-1)\left(1-D_{1}\right)^{2} $
Tab.1 CTPS control strategy and power transfer model
Fig.3 Average transmitted power versus shift ratio curve after scaling for different voltage transfer ratio
Fig.4 Theoretical waveform of CTPS control after addition of dead band
Fig.5 Switching mode of CTPS-controlled subperiod after dead band addition
开关管Dφ = D2模式Dφ = 0模式
无死区死区加入后无死区死区加入后
S1S2ZVS开通
硬关断
ZVS开通
硬关断
ZVS开通
硬关断
ZVS开通
硬关断
S3S4ZCS开通
ZCS关断
硬开通
硬关断
ZCS开通
ZCS关断
ZCS开通
硬关断
S5S6ZCS开通
ZCS关断
ZVS开通
硬关断
ZCS开通
ZCS关断
ZVS开通
硬关断
S7S8ZVS开通
硬关断
ZVS开通
硬关断
ZCS开通
ZCS关断
ZCS开通
硬关断
Tab.2 Soft-switching state of CTPS control before and after addition of dead band
Fig.6 Theoretical waveform of CTPS control after compensation of dead band
Fig.7 CTPS control strategy after compensation of dead band
开关管Dφ = D2模式Dφ = 0模式
补偿前补偿后补偿前补偿后
S1S2ZVS开通
硬关断
ZVS开通
硬关断
ZVS开通
硬关断
ZVS开通
硬关断
S3S4硬开通
硬关断
ZCS开通
ZCS关断
ZCS开通
硬关断
ZCS开通
ZCS关断
S5S6ZVS开通
硬关断
ZCS开通
ZCS关断
ZVS开通
硬关断
ZCS开通
ZCS关断
S7S8ZVS开通
硬关断
ZVS开通
硬关断
ZCS开通
硬关断
ZCS开通
ZCS关断
Tab.3 Soft-switching state of CTPS control before and after compensation of dead band
Fig.8 Curve of average transmitted power versus shift ratio for different dead time
Fig.9 Curve of current stress versus average transmitted power before and after dead band compensation
Fig.10 Experimental platform for DAB converter
参数数值参数数值
V1/V150V2/V60
n2∶1fs/ kHz40
L/μH50死区时间/μs1
Tab.4 Main parameter of DAB experimental platform
Fig.11 Experimental waveform of original control strategy Dφ = D2 mode at 1 µs dead time
Fig.12 Experimental waveform of Dφ = D2 mode after dead band compensation at 1 µs dead band
Fig.13 Experimental waveform of original control strategy Dφ = 0 mode at 1 µs dead time
Fig.14 Experimental waveform of Dφ = 0 mode after dead band compensation at 1 µs dead band
Fig.15 Experimental waveform of original control strategy Dφ = D2 mode at 0.5 µs dead time
Fig.16 Experimental waveform of Dφ = D2 mode after dead band compensation at 0.5 µs dead band
Fig.17 Experimental waveform of original control strategy Dφ = 0 mode at 0.5 µs dead time
Fig.18 Experimental waveform of Dφ = 0 mode after dead band compensation at 0.5 µs dead band
Fig.19 Comparison of power transfer efficiency before and after dead band compensation
[1]   赵彪, 安峰, 宋强, 等 双有源桥式直流变压器发展与应用[J]. 中国电机工程学报, 2021, 41 (1): 288- 298
ZHAO Biao, AN Feng, SONG Qiang, et al Development and application of DC transformer based on dual-active-bridge[J]. Proceedings of the CSEE, 2021, 41 (1): 288- 298
[2]   刘健, 魏昊焜, 张志华, 等 未来配电网的主要形态: 基于储能的低压直流微电网[J]. 电力系统保护与控制, 2018, 46 (18): 11- 16
LIU Jian, WEI Haokun, ZHANG Zhihua, et al Future architecture of power distribution network: low-voltage direct current micro-grids based on energy storage[J]. Power System Protection and Control, 2018, 46 (18): 11- 16
doi: 10.7667/PSPC201852
[3]   LÓPEZ-RODRÍGUEZ K, GIL-GONZÁLEZ W, ESCOBAR-MEJÍA A Design and implementation of a PI-PBC to manage bidirectional power flow in the DAB of an SST[J]. Results in Engineering, 2022, 14: 100437
doi: 10.1016/j.rineng.2022.100437
[4]   王荣闯, 王杉杉, 高明, 等 基于LCL谐振型双有源桥的三端口DC-DC变换器及其解耦控制[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1585- 1593
WANG Rongchuang, WANG Shanshan, GAO Ming, et al Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1585- 1593
[5]   朱介北, 李峰, 俞露杰, 等 基于固态变压器的互联交直流微电 网功率互济自主控制[J]. 电网技术, 2023, 47 (1): 284- 295
ZHU Jiebei, LI Feng, YU Lujie, et al Autonomous power mutual support control for AC/DC microgrid interconnected by solid state transformer[J]. Power System Technology, 2023, 47 (1): 284- 295
[6]   AKAGI H, KITADA R Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters[J]. IEEE Transactions on Power Electronics, 2011, 26 (9): 2457- 2464
doi: 10.1109/TPEL.2011.2107752
[7]   SHI J, GOU W, YAUN H, et al Research on voltage and power balance control for cascaded modular solid-state transformer[J]. IEEE Transactions on Power Electronics, 2011, 26 (4): 1154- 1166
doi: 10.1109/TPEL.2011.2106803
[8]   SHI H, WEN H, CHEN J, et al Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control[J]. IEEE Transactions on Industry Applications, 2018, 54 (4): 3483- 3496
doi: 10.1109/TIA.2018.2819120
[9]   程红, 高巧梅, 朱锦标, 等 基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制[J]. 电工技术学报, 2014, 29 (3): 245- 253
CHENG Hong, GAO Qiaomei, ZHU Jinbiao, et al Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2014, 29 (3): 245- 253
doi: 10.3969/j.issn.1000-6753.2014.03.031
[10]   BAI H, MI C Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control[J]. IEEE Transactions on Power Electronics, 2008, 23 (6): 2905- 2914
doi: 10.1109/TPEL.2008.2005103
[11]   胡燕, 张天晖, 杨立新, 等 双重移相DAB变换器回流功率优化与电流应力优化的对比研究[J]. 中国电机工程学报, 2020, 40 (Suppl.1): 243- 253
HU Yan, ZHANG Tianhui, YANG Lixin, et al comparative study of reactive power optimization and current Stress optimization of DAB converter with dual phase shift control[J]. Proceedings of the CSEE, 2020, 40 (Suppl.1): 243- 253
[12]   侯聂, 宋文胜, 王顺亮 全桥隔离DC/DC变换器相移控制归一化及其最小回流功率控制[J]. 中国电机工程学报, 2016, 36 (2): 499- 506
HOU Nie, SONG Wensheng, WANG Shunliang Normalization of phase shift control and minimum reflux power control of full-bridge isolated DC/DC converters[J]. Proceedings of the CSEE, 2016, 36 (2): 499- 506
[13]   WU F, FENG F, GOOI H B Cooperative triple-phase-shift control for isolated DAB DC–DC converter to improve current characteristics[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (9): 7022- 7031
doi: 10.1109/TIE.2018.2877115
[14]   TAKAGI K, FUJITA H. Dynamic control and dead-time compensation method of an isolated dual-active-bridge DC-DC converter [C]// Jointly Owned by EPE Association and IEEE PELS. Geneva: IEEE, 2015: 1-15.
[15]   BEHZADIRAFI S, LEÓN D F Closed-form determination of the impedance locus plot of fault current limiters: asymmetrical faults[J]. IEEE Transactions on Power Delivery, 2020, 35 (2): 754- 762
doi: 10.1109/TPWRD.2019.2925521
[16]   ZHAO B, SONG Q, LIU W, et al Dead-time effect of the high-frequency isolated bidirectional full-bridge DC–DC converter: comprehensive theoretical analysis and experimental verification[J]. IEEE Transactions on Power Electronics, 2014, 29 (4): 1667- 1680
doi: 10.1109/TPEL.2013.2271511
[17]   SONG C, CHEN A, CHEN J, et al. Dead-time effect analysis of dual active bridge DC-DC converter with dual-phase-shift control [C]// Chinese Automation Congress. Jinan: IEEE, 2017: 6545-6550.
[18]   刘海洋, 崔淑梅, 孙赫阳 开关缓冲电容与死区效应对双有源桥式变换器传输功率影响[J]. 高电压技术, 2023, 49 (2): 727- 737
LIU Haiyang, CUI Shumei, SUN Heyang Impact of snubber capacitance and dead-time effects on dual active bridge converters power transmission[J]. High Voltage Engineering, 2023, 49 (2): 727- 737
[19]   WEI S, ZHAO Z, LI K, et al Deadbeat current controller for bidirectional dual-active-bridge converter using an enhanced SPS modulation method[J]. IEEE Transactions on Power Electronics, 2021, 36 (2): 1274- 1279
doi: 10.1109/TPEL.2020.3007706
[1] CAI Hui, GUO Yu, YAN Hong, CHEN Wei-min, LI Qing. Design of soft-switching system on three-phase load balance for IDC electric power[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2210-2215.