Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2376-2383    DOI: 10.3785/j.issn.1008-973X.2024.11.019
    
Experimental study on pile driving process of grouted enlarged toe pile
Shaohan GENG1,3(),Fan SUN1,2,Juntao WU1,2,*(),Kuihua WANG1,2,Ying YANG4,5,Gang GAN2,3
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310063, China
3. The Architecture Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310027, China
4. Zhejiang Dadi Geological Survey and Design Limited Company, Hangzhou 310030, China
5. Zhongtian Construction Group Limited Company, Hangzhou 310016, China
Download: HTML     PDF(2912KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The transparent soil model test was conducted for the construction process of a new grouted enlarged-toe (GET) precast pile. The end resistance and side friction resistance can be significantly improved because of the expansion of the enlarged toe structure at the end and the solidification of the cement slurry around the pile, which makes the new pile type have higher uplift resistance compared with traditional prefabricated piles. Then the transparent soil material Laponite RD was used to simulate the construction environment of soft clay, and comparative model tests were conducted on conventional precast piles, precast piles with enlarged toe, and grouted enlarged-toe (GET) precast pile. Particle image velocimetry (PIV) technology was used to visualize the post processing of the pile construction process in order to explore the mechanism of the pile formation process of the new pile and provide theoretical support for the further promotion and application. Results showed that the distribution of soil displacement field in the construction of new pile types was different from that of conventional prefabricated piles, showing a vortex shape. The influence range was reduced by the enlarged toe structure and synchronous grouting technology of surface and internal construction disturbances on the soil surrounding pile, which is very beneficial for the construction of squeezed soil pile foundations.



Key wordsenlarged-toe      side grouting      transparent soil      pile driving mechanism      construction squeezing     
Received: 04 September 2023      Published: 23 October 2024
CLC:  TU 473  
Fund:  国家自然科学基金资助项目(52108349,52178358);浙江省自然科学基金探索项目(LTGG24E080001).
Corresponding Authors: Juntao WU     E-mail: gengshaohan2000@126.com;wujuntao31@126.com
Cite this article:

Shaohan GENG,Fan SUN,Juntao WU,Kuihua WANG,Ying YANG,Gang GAN. Experimental study on pile driving process of grouted enlarged toe pile. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2376-2383.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.019     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2376


带扩大桩靴桩侧同步灌浆桩成桩过程试验研究

针对新型带扩大桩靴桩侧同步灌浆预制桩基础的施工成桩过程,开展透明土模型的试验研究. 相较于传统预制桩,新桩型成桩完成后,端部扩大桩靴结构及桩周固化后的水泥浆液可以明显提升基桩端阻力和侧摩阻力,使得该新桩型具有较高的抗拔能力. 通过透明土材料Laponite RD模拟软黏土施工环境,分别针对常规预制桩、带扩大桩靴预制桩及带扩大桩靴桩侧同步灌浆预制桩开展对比模型试验,采用粒子图像测速(PIV)技术进行成桩施工过程的可视化后处理,以探明该新桩型的成桩过程机理,为新桩型的进一步推广应用提供理论支撑. 研究结果表明,新桩型施工挤土位移场的分布形式不同于常规预制桩,呈涡旋状,挤土位移的影响范围小于桩靴同直径的预制桩. X、Y方向的位移云图显示,扩大桩靴结构和同步灌浆施工技术使得桩周土体表面及内部施工扰动的影响范围更小,这对于挤土型桩基施工而言是十分有益的.


关键词: 扩大桩靴,  桩侧灌浆,  透明土,  成桩机理,  施工挤土 
Fig.1 Schematic diagram of new pile foundation structure
Fig.2 Construction of new pile foundation
Fig.3 Single pile static load test
桩型Q/kNW/元Wq/(元·kN?1
PHC500-AB-1251 5006 8254.55
新桩型2 4757 7363.13
Tab.1 Unit bearing capacity cost calculation table
Fig.4 Transparent comparison at soil sample thickness of 50 mm
参数数值
单晶尺寸/nm25×0.92
含水率/%<10
折射率/%1.5
相对密度2.53
Tab.2 Material parameter of Laponite RD
Fig.5 Schematic diagram of model pile
编号桩型桩身尺寸
(桩长×直径)
桩靴尺寸
(直径×厚度)
#1常规预制桩200 mm×20 mm
#2带扩大桩靴预制桩200 mm×20 mm30 mm×2 mm
#3带扩大桩靴+桩侧灌浆预制桩200 mm×20 mm30 mm×2 mm
#4常规预制桩200 mm×30 mm
Tab.3 Parameter of Laponite RD material
Fig.6 Experimental setup diagram of transparent soil model
Fig.7 Schematic diagram of speckle field
Fig.8 Schematic diagram of calibration point
Fig.9 Grouting effect diagram on pile side
Fig.10 Diagram of displacement of soil mass at pile side
Fig.11 Displacement contour of surrounding soil in X direction
Fig.12 Displacement contours of surrounding soil in Y direction
[1]   WU J, SUN F, EL NAGGAR M H, et al Analytical solution for consolidation of sand‐filled nodular pile (SFNP) foundation and its engineering application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46 (17): 3236- 3255
doi: 10.1002/nag.3449
[2]   WU J, WANG K, LIU X Effect of a nodular segment on the dynamic response of a tubular pile subjected to longitudinal vibration[J]. Acta Geotechnica, 2020, 15 (10): 2925- 2940
doi: 10.1007/s11440-020-00930-y
[3]   王奎华, 肖偲, 高柳, 等 静钻根植竹节桩竖向动力响应研究[J]. 振动与冲击, 2019, 38 (15): 49- 56
WANG Kuihua, XIAO Si, GAO Liu, et al Vertical dynamic response of a static drill rooted nodular pile[J]. Journal of Vibration and Shock, 2019, 38 (15): 49- 56
[4]   吴君涛, 王奎华, 肖偲, 等 静钻根植工法下变截面管桩纵向振动特性分析[J]. 岩石力学与工程学报, 2018, 37 (4): 1030- 1040
WU Juntao, WANG Kuihua, XIAO Si, et al Longitudinal vibration characteristics of static drill rooted tubular pile with variable section[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (4): 1030- 1040
[5]   童魏烽. 基于渐变截面模型的楔形桩振动特性研究及应用[D]. 杭州: 浙江大学, 2019.
TONG Weifeng. Study and application on vibration characteristics of tapered pile based on gradient section model [D]. Hangzhou: Zhejiang University, 2019.
[6]   王奎华, 童魏烽 基于非等截面桩体模型的楔形桩动力响应[J]. 哈尔滨工业大学学报, 2019, 51 (8): 104- 110
WANG Kuihua, TONG Weifeng Dynamic response of tapered pile based on non-equal-section pile model[J]. Journal of Harbin Institute of Technology, 2019, 51 (8): 104- 110
doi: 10.11918/j.issn.0367-6234.201806076
[7]   王奎华, 童魏烽, 王磊 基于非等截面桩体模型的缺陷楔形桩动力响应研究[J]. 天津大学学报: 自然科学与工程技术版, 2018, 51 (12): 1238- 1245
WANG Kuihua, TONG Weifeng, WANG Lei Dynamic response of defective tapered pile based on non-equal-section pile model[J]. Journal of Tianjin University: Science and Technology, 2018, 51 (12): 1238- 1245
[8]   王奎华, 童魏烽, 肖偲, 等 楔形桩的动力响应与试验研究[J]. 湖南大学学报: 自然科学版, 2019, 46 (5): 94- 102
WANG Kuihua, TONG Weifeng, XIAO Si, et al Study on dynamic response of tapered pile and model test[J]. Journal of Hunan University: Natural Science Edition, 2019, 46 (5): 94- 102
[9]   林祥军, 张魁, 赵成昆, 等 套管螺旋桩抗压承载性能模型试验研究[J]. 江苏建筑, 2021, 41 (6): 95- 97
LIN Xiangjun, ZHANG Kui, ZHAO Chengkun, et al Model test study on compressive bearing characteristics of casing screw pile[J]. Jiangsu Construction, 2021, 41 (6): 95- 97
doi: 10.3969/j.issn.1005-6270.2021.06.027
[10]   赵宇. 注浆式螺旋钢管桩抗压承载力试验研究及设计方法[D]. 济南: 山东大学, 2021.
ZHAO Yu. Experimental study and design method of compressive bearing capacity of grouting helical pile [D]. Jinan: Shandong University, 2021.
[11]   张新春, 郝洪策, 胡燃, 等 砂土中螺旋桩纵向振动响应的模型试验研究[J]. 中国工程机械学报, 2021, 19 (6): 530- 535
ZHANG Xinchun, HAO Hongce, HU Ran, et al Model test study on longitudinal vibration response characteristics of screw piles in sand[J]. Chinese Journal of Construction Machinery, 2021, 19 (6): 530- 535
doi: 10.3969/j.issn.1672-5581.2021.6.zggcjxxb202106011
[12]   BRUCE D Enhancing the performance of large diameter piles by grouting[J]. Ground Engineering, 1986, 19 (4): 9- 15
[13]   FLEMING W G K The understanding of continuous flight auger piling, its monitoring and control[J]. International Geotechnical Engineering, 1995, 113 (3): 157- 165
[14]   王士恩, 刘超常, 刘祖德 管桩注浆增强承载力的试验研究[J]. 岩土工程学报, 1998, 20 (1): 87- 89
WANG Shien, LIU Chaochang, LIU Zude A test on improving bearing capacity of pile with grouting[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (1): 87- 89
doi: 10.3321/j.issn:1000-4548.1998.01.021
[15]   王奎华, 童魏烽, 吴君涛, 等. 带桩靴管桩桩端内锤击沉桩及同步端测注浆结构及工艺: CN107938666B [P]. 2023-06-02.
WANG Kuihua, TONG Weifeng, WU Juntao, et al. Construction structure and method of precast pile with enlarged spudcan and synchronous side grouting: CN107938666B [P]. 2023-06-02.
[16]   ISKANDER M G, LIU J, SADEK S Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (3): 262- 273
doi: 10.1061/(ASCE)1090-0241(2002)128:3(262)
[17]   SADEK S, ISKANDER M G, LIU J Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal, 2002, 39 (1): 111- 124
doi: 10.1139/t01-075
[18]   WHITE D J, TAKE W A, BOLTON M D Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Geotechnique, 2003, 53 (7): 619- 631
doi: 10.1680/geot.2003.53.7.619
[19]   曹兆虎, 孔纲强, 刘汉龙, 等 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报, 2014, 36 (8): 1564- 1568
CAO Zhaohu, KONG Gangqiang, LIU Hanlong, et al Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1564- 1568
doi: 10.11779/CJGE201408025
[20]   LIU C, TANG X, WEI H, et al Model tests of jacked-pile penetration into sand using transparent soil and incremental particle image velocimetry[J]. KSCE Journal of Civil Engineering, 2020, 24 (4): 1128- 1145
doi: 10.1007/s12205-020-1643-4
[21]   周航, 孔纲强, 崔允亮 基于透明土的XCC桩沉桩挤土效应模型试验及其理论研究[J]. 土木工程学报, 2017, 50 (7): 99- 109
ZHOU Hang, KONG Gangqiang, CUI Yunliang Model test and theoretical study on XCC pile penetration effect based on transparent soil[J]. China Civil Engineering Journal, 2017, 50 (7): 99- 109
[22]   WALLACE J F, RUTHERFORD C J Geotechnical properties of LAPONITE RD®[J]. Geotechnical Testing Journal, 2015, 38 (5): 574- 587
doi: 10.1520/GTJ20140211
[23]   EL HOWAYEK A. Characterization, rheology and microstructure of LAPONITE suspensions [D]. West Lafayette: Purdue University, 2011.
[24]   MO P Q, MARSHALL A M, YU H S Centrifuge modelling of cone penetration tests in layered soils[J]. Géotechnique, 2015, 65 (6): 468- 481
[25]   THIELICKE W, STAMHUIS E PIVLAB–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2 (1): e30
[26]   吴君涛, 耿少寒, 梁一然, 等 带扩大桩靴桩基施工挤土效应解析研究[J]. 浙江大学学报: 工学版, 2024, 58 (1): 130- 139
WU Juntao, GENG Shaohan, LIANG Yiran, et al Analytical study on soil squeezing effect during pile construction with enlarged spudcan[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 130- 139
[1] YUAN Bing xiang,WU Yue dong, CHEN Rui, FENG Zhong wen, WANG Yi xian. Model tests on displacement field of internal soil induced by laterally loading pile[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2031-2036.
[2] ZHANG Yi-ping, LI Liang, WANG Si-zhao. Experimental study on pore fluid for forming transparent soil[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1828-1834.