|
|
Comparison of carbon emission calculation for MSW incineration power generation project |
Jingying HUANG( ),Xuejun JIAO,Jisheng LONG*( ) |
Shanghai SUS Environment Limited Company, Shanghai 201703, China |
|
|
Abstract The possibility of combining Chinese certified emission reduction (CCER) method and balance method was proposed in order to improve the accuracy of carbon emission calculation for municipal solid waste (MSW) incineration. The two methods were used to calculate carbon emissions of five MSW incineration power generation projects in different regions during the crediting period, and the factors affecting carbon emissions were analyzed. Results showed that baseline emissions, project emissions and project emission reductions per ton waste were 0.26~0.40 t, 0.34~0.79 t and ?0.44~?0.05 t respectively in CCER method calculation. Only project emissions were calculated in balance method, ranging from 0.24 t to 0.50 t per ton waste (excluding biogenic source carbon emissions). The emission range of CCER method and balance method were 0.32~0.76 t and 0.22~0.49 t per ton waste respectively by comparing project emissions of CO2 (fossil source carbon emissions) from combustion of the two methods. The result of balance method was relatively close to the literature values. Results showed that a quite great error would happen in CCER method calculation due to the spatial and temporal fluctuations of MSW samples. Balance method was a convenient, fast and accurate method for real-time carbon emissions calculation, while MSW sampling was unnecessary during calculation. Balance method could replace the calculation of project emissions of CO2 (fossil source carbon emissions) from combustion in CCER method.
|
Received: 12 September 2023
Published: 23 October 2024
|
|
Fund: 国家重点研发计划资助项目(2022YFE0117300). |
Corresponding Authors:
Jisheng LONG
E-mail: huangjy1@shjec.cn;long@shjec.cn
|
垃圾焚烧发电项目碳排放计算对比
为了提高生活垃圾焚烧碳排放计算的准确性,提出中国核证自愿减排量(CCER)方法学和平衡法结合的可能性. 采用2种方法学分别计算5个不同地区的垃圾焚烧发电项目计入期内的碳排放,分析排放影响因素. 结果表明,CCER方法学中的每吨垃圾基准线排放质量为0.26~0.40 t,项目排放质量为0.34~0.79 t,项目减排质量为?0.44~?0.05 t. 平衡法仅对每吨垃圾项目排放质量进行计算,为0.24~0.50 t(不含生物源碳排放). 对2种方法学项目排放量中的每吨垃圾焚烧产生的CO2(化石源碳)排放量进行比较,利用CCER方法学计算得到的每吨垃圾排放质量为0.32~0.76 t;平衡法计算的范围为0.22~0.49 t,较接近文献值. 垃圾样品的时空波动特性使得CCER方法学的计算结果具有较大误差;平衡法无须进行垃圾采样,是简便快捷、准确性高的碳排放实时在线计算方法学. 平衡法可以替代CCER方法学中焚烧产生的CO2(化石源碳)排放计算.
关键词:
垃圾焚烧,
碳排放,
中国核证自愿减排量(CCER)方法学,
平衡法,
化石源碳,
生物源碳
|
|
[1] |
SONG Q, WANG Z, LI J, et al Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau[J]. Renewable and Sustainable Energy Reviews, 2018, 81 (1): 2450- 2459
|
|
|
[2] |
严薇, 刘舒乐, 吴正方, 等 废弃物焚烧处理温室气体排放情景模拟与预测[J]. 环境科学, 2022, 43 (12): 5470- 5477 YAN Wei, LIU Shule, WU Zhengfang, et al Scenario simulation and prediction of greenhouse gas emissions from incineration of solid waste[J]. Environmental Science, 2022, 43 (12): 5470- 5477
|
|
|
[3] |
陈清, 汪屈峰, 李艳, 等 华南某垃圾焚烧厂焚烧飞灰理化特性及重金属形态研究[J]. 环境卫生工程, 2019, 27 (4): 13- 18 CHEN Qing, WANG Qufeng, LI Yan, et al Research on physico-chemical characteristics and heavy metal fraction in fly ash from a MSW incineration plant in South China[J]. Environmental Sanitation Engineering, 2019, 27 (4): 13- 18
|
|
|
[4] |
康治金, 刘志英, 徐学骁, 等 生活垃圾焚烧飞灰制备植草砖的研究[J]. 环境污染与防治, 2018, 40 (9): 1019- 1022 KANG Zhijin, LIU Zhiying, XU Xuexiao, et al Research on preparation of grass-planting tiles with MSWI fly ash[J]. Environmental Pollution and Control, 2018, 40 (9): 1019- 1022
|
|
|
[5] |
尹文华, 龙世康, 何志远, 等 陈腐垃圾掺烧对垃圾焚烧烟气中污染物排放的影响[J]. 环境工程, 2022, 40 (7): 76- 80 YIN Wenhua, LONG Shikang, HE Zhiyuan, et al Impact of co-incineration of MSWI with aged refuse on gaseous pollutants emission[J]. Environmental Engineering, 2022, 40 (7): 76- 80
|
|
|
[6] |
国家统计局. 年度数据[EB/OL]. (2023-06-01)[2023-07-20]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0B09&sj=2021.
|
|
|
[7] |
BIAN R, ZHANG T, ZHAO F, et al Greenhouse gas emissions from waste sectors in China during 2006–2019: implications for carbon mitigation[J]. Process Safety and Environmental Protection, 2022, 161 (5): 488- 497
|
|
|
[8] |
黄静颖, 张浩, 谭钦怀, 等 小型垃圾热解气化焚烧厂碳排放计算[J]. 环境卫生工程, 2021, 29 (4): 1- 6 HUANG Jingying, ZHANG Hao, TAN Qinhuai, et al Calculation of carbon emissions of a small scale waste pyrolysis-gasification incineration plant[J]. Environmental Sanitation Engineering, 2021, 29 (4): 1- 6
|
|
|
[9] |
LIU Y, XING P, LIU J Environmental performance evaluation of different municipal solid waste management scenarios in China[J]. Resources, Conservation and Recycling, 2017, 125 (10): 98- 106
|
|
|
[10] |
ALQATTAN N, ACHEAMPONG M, JAWARD F M, et al Reviewing the potential of waste-to-energy (WTE) technologies for sustainable development goal (SDG) numbers seven and eleven[J]. Renewable Energy Focus, 2018, 27 (12): 97- 110
|
|
|
[11] |
ANSHASSI M, SACKLES H, TOWNSEND T G A review of LCA assumptions impacting whether landfilling or incineration results in less greenhouse gas emissions[J]. Resources Conservation and Recycling, 2021, 174 (11): 105810
|
|
|
[12] |
中国人民共和国生态环境部. 碳监测评估试点工作方案[EB/OL]. (2021-09-12)[2023-07-20]. http://www.bjyddx.com.cn/dianchi/437.html.
|
|
|
[13] |
MOHN J, SZIDAT S, FELLNER J, et al Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances[J]. Bioresource Technology, 2008, 99 (14): 6471- 6479
doi: 10.1016/j.biortech.2007.11.042
|
|
|
[14] |
LEE J, KANG S, KIM S, et al Development of municipal solid waste classification in Korea based on fossil carbon fraction[J]. Journal of the Air and Waste Management Association, 2015, 65 (10): 1256- 1260
doi: 10.1080/10962247.2015.1079563
|
|
|
[15] |
FELLNER J, CENCIC O, RECHBERGER H A new method to determine the ratio of electricity production from fossil and biogenic sources in waste-to-energy plants[J]. Environmental Science and Technology, 2007, 41 (7): 2579- 2586
doi: 10.1021/es0617587
|
|
|
[16] |
FELLNER J, CENCIC O, ZELLINGER G, et al. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air [J]. Waste Management and Research, 2011, 29(10): 3-12. FELLNER J, CENCIC O, ZELLINGER G, et al. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air [J]. Waste Management and Research , 2011, 29(10): 3-12.
|
|
|
[17] |
SCHWARZBOCK T, RECHBERGER H, CENCIC O, et al Determining national greenhouse gas emissions from waste-to-energy using the balance method[J]. Waste Management, 2016, 49 (3): 263- 271
|
|
|
[18] |
中华人民共和国国家发展和改革委员会. CM-072-V01 多选垃圾处理方式(第一版)[EB/OL]. (2013-03-11)[2023-07-20]. https://cdm.ccchina.org.cn/zylist.aspx?clmId=162.
|
|
|
[19] |
何品晶, 陈淼, 杨娜, 等 我国生活垃圾焚烧发电过程中温室气体排放及影响因素: 以上海某城市生活垃圾焚烧发电厂为例[J]. 中国环境科学, 2011, 31 (3): 402- 407 HE Pinjing, CHEN Miao, YANG Na, et al GHG emissions from Chinese MSW incineration and their influencing factors: case study of one MSW incineration plant in Shanghai[J]. China Environmental Science, 2011, 31 (3): 402- 407
|
|
|
[20] |
EGGLESTON H. S, BUENDIA L, MIWA K, et al. IPCC guidelines for national greenhouse gas inventories 2006 [M]. Tokyo: IGES, 2007.
|
|
|
[21] |
杨煜强, 王坤, 黄焕林, 等 基于生活垃圾分类的厨余垃圾采样方法研究[J]. 环境科学学报, 2015, 35 (2): 570- 575 YANG Yuqiang, WANG Kun, HUANG Huanlin, et al Kitchen waste sampling method based on domestic waste classification[J]. Acta Scientiae Circumstantiae, 2015, 35 (2): 570- 575
|
|
|
[22] |
中华人民共和国住房与城乡建设部. 2021年中国城市建设状况公报[EB/OL]. (2022-09-28)[2023-07-20]. https://www.mohurd.gov.cn/ess/?ty=a&query=2021%E5%B9%B4%E4%B8%AD%E5%9B%BD%E5%9F%8E%E5%B8%82%E5%BB%BA%E8%AE%BE%E7%8A%B6%E5%86%B5%E5%85%AC%E6%8A%A5&ukl=&uka=&ukf=2021%E5%B9%B4%E4%B8%AD%E5%9B%BD%E5%9F%8E%E5%B8%82%E5%BB%BA%E8%AE%BE%E7%8A%B6%E5%86%B5%E5%85%AC%E6%8A%A5&ukt=&sl=&ts=&te=&upg=1,2022.
|
|
|
[23] |
刘志强, 潘荔, 赵毅, 等 “十四五”时期我国火电行业节能潜力分析与建议[J]. 中国能源, 2021, 43 (4): 12- 18 LIU Zhiqiang, PAN Li, ZHAO Yi, et al Analysis and suggestions of “14th Five-Year Plan” thermal power industry energy conservation potential in China[J]. Energy of China, 2021, 43 (4): 12- 18
|
|
|
[24] |
成润婷, 张勇军, 李立浧, 等 面向高比例可再生能源消纳的电力市场建设及研究进展[J]. 中国工程科学, 2023, 25 (2): 89- 99 CHENG Runting, ZHANG Yongjun, LI Licheng, et al Construction and research progress of electricity market for high-proportion renewable energy consumption[J]. Strategic Study of CAE, 2023, 25 (2): 89- 99
|
|
|
[25] |
李欢, 金宜英, 李洋洋 生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011, 31 (2): 259- 264 LI Huan, JIN Yiying, LI Yangyang Carbon emission and its reduction strategies during municipal solid waste treatment[J]. China Environmental Science, 2011, 31 (2): 259- 264
|
|
|
[26] |
LIU Y, SUN W, LIU J Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis[J]. Waste Management, 2017, 68 (10): 653- 661
|
|
|
[27] |
OBERMOSER M, FELLNER J, RECHBERGER H Determination of reliable CO2 emission factors for waste-to-energy plants[J]. Waste Management and Research, 2009, 27 (9): 907- 913
doi: 10.1177/0734242X09349763
|
|
|
[28] |
ZIYANG L, LUOCHUN W, NANWEN Z, et al Martial recycling from renewable landfill and associated risks: A review[J]. Chemosphere, 2015, 131 (7): 91- 103
|
|
|
[29] |
赵磊, 陈德珍, 刘光宇, 等 垃圾热化学转化利用过程中碳排放的两种计算方法[J]. 环境科学学报, 2010, 30 (8): 1634- 1641 ZHAO Lei, CHEN Dezhen, LIU Guangyu, et al Two calculation methods for greenhouse gas emissions from municipal solid waste thermo-chemical conversion and utilization processes[J]. Acta Scientiae Circumstantiae, 2010, 30 (8): 1634- 1641
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|