|
|
Effect of pit curvature on kinetic properties of near-wall single vacuole collapse |
Wei HAN( ),Yingjian HAO,Rennian LI,Jiale REN,Xinyuan HUANG |
College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract Cavitation erosion will lead to pits with different curvatures on the wall of fluid machinery, which will affect the flow field around the wall of fluid machinery and make the collapse process of the nearby vacuole complex. The process of vacuole collapse near a pit wall was simulated based on the Euler-Euler method, and the dynamic characteristics of the spherical vacuole under different wall curvatures were analyzed. Results show that the vacuole collapse time increases exponentially with the relative pit curvature and decreases monotonically with the near-wall coefficient of the vacuole in a linear function, while the Mach number of the vacuole jet decreases monotonically with the relative pit curvature and increases monotonically with the near-wall coefficient of the vacuole in a linear function. The impact load decreases monotonically with the vacuole collapse time in a quadratic function, and decreases monotonically with the relative pit curvature and the near-wall coefficient of the vacuole in a linear function.
|
Received: 08 August 2023
Published: 27 September 2024
|
|
Fund: 国家自然科学基金资助项目(52179086,52269022);景泰川电力灌溉工程大型梯级泵站改造关键技术研究. |
凹坑曲率对近壁单空泡溃灭动力学特性的影响
空蚀导致流体机械壁面出现凹坑,影响流体机械壁面周围的流场,使附近的空泡溃灭过程复杂. 基于欧拉方法模拟凹坑壁面附近空泡溃灭过程,分析球形空泡在不同壁面曲率下的动力学特性. 结果表明,空泡溃灭时间与凹坑相对曲率呈指数函数关系,与空泡近壁系数呈线性关系且单调递减;空泡射流马赫数与凹坑相对曲率呈线性关系且单调递减,与空泡近壁系数呈线性关系且单调递增;冲击载荷与空泡溃灭时间呈二次函数关系且单调递减,与凹坑相对曲率和空泡近壁系数呈线性关系且单调递减.
关键词:
空泡动力学,
凹坑相对曲率,
射流速度,
冲击载荷,
空泡溃灭
|
|
[1] |
SUN Y, DU Y, YAO Z, et al The effect of surface geometry of solid wall on the collapse of a cavitation bubble[J]. Journal of Fluids Engineering, 2022, 144 (7): 071402
doi: 10.1115/1.4053350
|
|
|
[2] |
米建东. 单空泡溃灭过程的动力学特性研究[D]. 兰州: 兰州理工大学, 2022. MI Jiandong. A research of single bubble of dynamics properties for the collapse process [D]. Lanzhou: Lanzhou University of Technology, 2022.
|
|
|
[3] |
王效贵, 罗冲, 顾桢标 固壁面附近空化泡溃灭过程的数值模拟[J]. 浙江工业大学学报, 2015, 43 (5): 512- 516 WANG Xiaogui, LUO Chong, GU Zhenbiao Collapse simulation of a cavitation bubble near a rigid boundary[J]. Journal of Zhejiang University of Technology, 2015, 43 (5): 512- 516
doi: 10.3969/j.issn.1006-4303.2015.05.008
|
|
|
[4] |
李世民, 张阿漫, 崔璞 刚性壁面附近气泡和自由面的耦合效应研究[J]. 空气动力学学报, 2020, 38 (4): 796- 806 LI Shimin, ZHANG Aman, CUI Pu Study on the interaction between the bobble and free surface close to a rigid wall[J]. Acta Aerodynamica Sinica, 2020, 38 (4): 796- 806
doi: 10.7638/kqdlxxb-2020.0060
|
|
|
[5] |
ZHANG A M, WANG S P, WU G X Simulation of bubble motion in a compressible liquid based on the three dimensional wave equation[J]. Engineering Analysis with Boundary Elements, 2013, 37 (9): 1179- 1188
|
|
|
[6] |
ZHANG A M, LI S M, CUI P, et al A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35: 033323
|
|
|
[7] |
AGANIN A A, ILGAMOV M A, KOSOLAPOVA L A, et al Dynamics of a cavitation bubble near a solid wall[J]. Thermophysics and Aeromechanics, 2016, 23: 211- 220
doi: 10.1134/S0869864316020074
|
|
|
[8] |
YANG Y X, WANG Q X, KEAT T S Dynamic features of a laser-induced cavitation bubble near a solid boundary[J]. Ultrasonics Sonochemistry, 2013, 20 (4): 1098- 1103
doi: 10.1016/j.ultsonch.2013.01.010
|
|
|
[9] |
CUI P, ZHANG A, WANG S, et al Experimental investigation of bubble dynamics near the bilge with a circular opening[J]. Applied Ocean Research, 2013, 41: 65- 75
doi: 10.1016/j.apor.2013.03.002
|
|
|
[10] |
KIM D, KIM D Underwater bubble collapse on a ridge-patterned structure[J]. Physics of Fluids, 2020, 32 (5): 053312
doi: 10.1063/5.0006372
|
|
|
[11] |
MA C, SHI D, CHEN Y, et al Experimental research on the influence of different curved rigid boundaries on electric spark bubbles[J]. Materials, 2020, 13 (18): 3941
doi: 10.3390/ma13183941
|
|
|
[12] |
AZIZ I A, MANMI K M A, SAEED R K, et al Modeling three dimensional gas bubble dynamics between two curved rigid plates using boundary integral method[J]. Engineering Analysis with Boundary Elements, 2019, 109: 19- 31
doi: 10.1016/j.enganabound.2019.09.008
|
|
|
[13] |
MANMI K M A, AZIZ I A, ARJUNAN A, et al Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates[J]. Journal of Hydrodynamics, 2021, 33: 1019- 1034
doi: 10.1007/s42241-021-0090-0
|
|
|
[14] |
KRÖNINGER D A. Particle-tracking-velocimetry-messungen an kollabierenden kavitationsblasen [D]. Göttingen: University of Göttingen, 2008. KRÖNINGER D A. Particle-tracking-velocimetry-messungen an kollabierenden kavitationsblasen [D]. Göttingen: University of Göttingen, 2008. KRÖNINGER D A. Application of particle tracking velocimetry in vacuole collapse [D]. Göttingen: University of Göttingen, 2008.
|
|
|
[15] |
布伦南. 空化与空泡动力学[M]. 王勇, 潘中永, 译. 镇江: 江苏大学出版社, 2013: 3–12.
|
|
|
[16] |
张马骏, 陈鑫 单个蒸汽气泡溃灭过程的边壁效应数值研究[J]. 上海交通大学学报, 2014, 48 (12): 1766- 1771 ZHANG Majun, CHEN Xin Numerical study of boundary effect during the collapse of single vapor bubble[J]. Journal of Shanghai Jiao Tong University, 2014, 48 (12): 1766- 1771
|
|
|
[17] |
NGUYEN V T, PHAN T H, DUY T N, et al Modeling of the bubble collapse with water jets and pressure loads using a geometrical volume of fluid based simulation method[J]. International Journal of Multiphase Flow, 2022, 152: 104103
doi: 10.1016/j.ijmultiphaseflow.2022.104103
|
|
|
[18] |
METTIN R, AKHATOV I, PARLITZ U, et al Bjerknes forces between small cavitation bubbles in a strong acoustic field[J]. Physical Review E, 1997, 56 (3): 2924- 2931
doi: 10.1103/PhysRevE.56.2924
|
|
|
[19] |
MOO J G S, MAYORGA-MARTINEZ C C, WANG H, et al Bjerknes forces in motion: long-range translational motion and chiral directionality switching in bubble-propelled micromotors via an ultrasonic pathway[J]. Advanced Functional Materials, 2018, 28 (25): 1702618
doi: 10.1002/adfm.201702618
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|