Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 847-856    DOI: 10.3785/j.issn.1008-973X.2024.04.020
    
Orthogonal experimental study on mechanical properties of CFRP-bolted timber joints with slotted-in corrugated steel plates
Xuan GUO(),Zhonggen XU*(),Yatao ZHAO,Danyun ZHONG
1. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
Download: HTML     PDF(2185KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to visualize the effect of shaped sections on the joints, and to provide some experience for the safety design of bolted timber joints with slotted-in shaped steel plates, a CFRP-bolted timber joints with slotted-in corrugated steel plates was proposed, and uniaxial paralleling tensile tests were carried out under orthogonal parametric design conditions. The tests reveal that the joints have multiple force characteristics, which mainly include the forms of timber shear damage, transverse to tension-type fracture (TL fracture), end compression crush, CFRP fracture and bolt bending. The joints have no obvious yielding stage, and mainly undergo the elastic stage, the fracture failure transition stage and the fracture failure stage. Based on the orthogonal parametric analysis, the degree and the pattern of different factors on the proposed joint were obtained. Results show that the ultimate strength and ductility are more significantly influenced by each factor than the elastic stiffness, and the wave angle and the wave height are the main factors. The ultimate strength fluctuates with the increase of the wave height and is negatively correlated with the wave angle, while the ductility is negatively correlated with the wave angle and the wave height.



Key wordstimber structure      slotted-in corrugated steel plates      bolted joint      CFRP      orthogonal experiment     
Received: 05 April 2023      Published: 27 March 2024
CLC:  TU 366.3  
Fund:  国家自然科学基金资助项目(51678172);国家标准制修订计划(2021944-T-469);广州市标准化战略专项资助项目.
Corresponding Authors: Zhonggen XU     E-mail: 1159455394@qq.com;xuzhonggen@263.net
Cite this article:

Xuan GUO,Zhonggen XU,Yatao ZHAO,Danyun ZHONG. Orthogonal experimental study on mechanical properties of CFRP-bolted timber joints with slotted-in corrugated steel plates. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 847-856.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.020     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/847


CFRP-木结构波纹钢填板螺栓节点力学性能正交试验研究

为了明确异型截面钢填板对节点性能的影响,为木结构异型钢填板螺栓节点提供安全性的设计经验,提出CFRP-木结构波纹钢填板螺栓节点,在正交试验设计条件下开展单轴顺纹拉伸试验研究. 试验发现,节点具有多种受力特征,包括木构件剪切破坏、顺纹向张开型断裂(TL断裂)、端部顺纹压溃、CFRP断裂和螺栓弯折等形式;节点在受力过程中没有明显屈服阶段,主要经历线弹性阶段、断裂失效过渡阶段和断裂失效阶段. 通过正交参数分析得到不同因素对所提节点主要力学性能的影响程度及规律. 结果表明:各因素对极限强度和延性的影响比对弹性刚度的影响显著,且波角和波高为主要影响因素. 极限强度与波角负相关且随着波高的增大呈波动变化,延性与波角和波高负相关.


关键词: 木结构,  波纹钢填板,  螺栓节点,  CFRP,  正交试验 
Fig.1 Design details of specimen for CFRP-bolted timber joints with slotted-in corrugated steel plates
因素水平
λ/mm35、40、45、50
h/mm10、15、20、25
θ/(°)48、58、68、78
t/mm90、120、150、180
n0、1、2、3
Tab.1 Factors and levels
编号λ/mmh/mmθ/(°)t/mmn
CSJ1351048900
CSJ23515581201
CSJ33520681502
CSJ43525781803
CSJ54010581503
CSJ64015481802
CSJ7402078901
CSJ84025681200
CSJ94510681801
CSJ104515781500
CSJ114520481203
CSJ12452558902
CSJ135010781202
CSJ14501568903
CSJ155020581800
CSJ165025481501
Tab.2 Type of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates
Fig.2 Experiment loading of specimen for CFRP-bolted timber joints with slotted-in corrugated steel plates
Fig.3 Area division schematic
Fig.4 Experiment phenomena of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates
Fig.5 Simplified mode of double cantilever beam fracture
Fig.6 Deformation form of bolts
失效模式试件编号
S ⅠS Ⅰ、S ⅢS ⅢS Ⅲ、S ⅣS Ⅳ
端部承压CSJ6CSJ9
TL断裂CSJ1、CSJ2CSJ5
CFRP断裂CSJ12CSJ11、CSJ14CSJ3、CSJ16
端部剪切CSJ7、CSJ13CSJ8CSJ4、CSJ10、CSJ15
Tab.3 Failure modes of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates and yield modes of bolts
Fig.7 Load-displacement curve of specimen
Fig.8 Definitions of main mechanical property parameters
试件ke/(kN·mm?1)Fy/kNΔy/mmFmax/kNΔu/mmD
CSJ13.86(4.83)40.78(4.63)14.11(7.51)46.81(6.94)52.63(7.42)3.73(11.59)
CSJ24.22(6.98)43.22(4.01)13.74(4.60)52.31(3.99)57.22(3.06)4.17(6.62)
CSJ34.25(8.76)43.88(3.27)13.46(5.76)50.89(2.82)34.75(4.34)2.58(4.59)
CSJ44.11(3.74)43.00(3.76)15.95(8.13)54.27(6.23)26.33(7.67)1.65(5.18)
CSJ54.39(10.64)55.95(4.59)16.59(4.91)66.92(3.79)72.84(7.70)4.39(3.55)
CSJ64.51(12.72)63.20(7.09)18.16(6.33)74.07(7.12)75.78(7.13)4.29(7.05)
CSJ73.65(3.98)34.22(4.80)11.82(4.63)43.86(5.85)18.16(5.46)1.53(9.40)
CSJ83.73(1.55)39.23(3.64)15.31(3.82)47.85(4.54)20.20(4.59)1.32(0.93)
CSJ94.72(7.54)53.78(8.68)16.02(4.05)62.29(7.19)42.51(4.94)2.65(8.28)
CSJ104.21(3.45)47.92(5.95)14.72(6.09)54.05(3.11)21.12(6.23)1.43(5.56)
CSJ114.31(4.66)45.83(4.04)13.94(4.21)57.32(3.90)40.36(5.23)2.90(7.28)
CSJ123.67(2.46)36.15(6.75)14.98(5.29)45.06(4.80)29.00(1.66)1.93(4.02)
CSJ133.91(3.71)45.13(6.34)15.46(7.77)47.12(7.87)31.57(8.37)2.04(10.40)
CSJ144.22(8.66)44.77(3.46)15.81(3.59)50.24(4.66)38.34(6.16)2.42(5.02)
CSJ154.33(5.99)39.96(5.15)14.93(13.21)44.78(8.91)36.88(10.61)2.48(12.79)
CSJ163.75(4.79)43.48(2.14)19.66(2.81)51.05(4.62)48.40(4.11)2.46(4.92)
Tab.4 Mechanical property parameters of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates
力学性能参数因素(来源)QdfMSVSSig
keλ0.07030.0230.2540.048
h2.17931.06011.4940.002
θ0.12930.0430.4650.025
t3.05030.6837.4140.000
n0.14030.0470.5060.017
Fmaxλ346.1403115.38021.7920.030
h1060.3103353.43766.7550.000
θ955.1053318.36860.1310.000
t603.1773201.05937.9750.000
n416.3723138.79126.2140.020
Dλ5.34931.783268.4450.000
h14.88034.960746.8230.000
θ22.00337.3341104.2790.000
t1.57430.52578.9850.010
n2.42430.808121.6720.003
ke误差2.950320.092
Fmax169.425325.295
D0.213320.007
ke总计798.26948
Fmax119 369.59548
D365.43448
Tab.5 Variance analysis of main mechanical property parameters
Fig.9 Multiple comparison of significant factors
[1]   LI J, RISMANCHI B, NGO T Feasibility study to estimate the environmental benefits of utilising timber to construct high-rise buildings in Australia[J]. Build Environmental, 2019, 147: 108- 120
doi: 10.1016/j.buildenv.2018.09.052
[2]   AWALUDIN A, HIRAI T, HAYASHIKA T, et al Load-carrying capacity of steel-to-timber joints with a pretensioned bolt[J]. Journal of Wood Science, 2008, 54: 362- 368
doi: 10.1007/s10086-008-0962-8
[3]   JENSEN J L, QUENNEVILLE P Experimental investigations on row shear and splitting in bolted connections[J]. Construction and Build Materials, 2011, 25 (5): 2420- 2425
doi: 10.1016/j.conbuildmat.2010.11.050
[4]   Canadian Standards Association. Engineering design in wood: CSA O86 [S]. [S.l.]: Canadian Standards Association Group, 2019.
[5]   ANSI. National design specification for wood construction: ANSI/NDS SUPP-2018 [S]. Washington DC: American Forest and Paper Association, 2018.
[6]   European Committee. Eurocode 5: design of timber structures part1-1: general-common rules and rules for buildings: EN 1995-1-1 [S]. [S.l.]: European Committee, 2004.
[7]   祝恩淳, 王笑婷, 牛爽, 等 木结构钢板螺栓连接节点承载力计算分析及试验研究[J]. 建筑结构学报, 2020, 41 (1): 113- 121
ZHU Enchun, WANG Xiaoting, NIU Shuang, et al Experimental and analytical study of load-carrying capability of bolt connected joints with steel plates for timber structures[J]. Journal of Building Structures, 2020, 41 (1): 113- 121
[8]   JORISSEN A. Double shear timber connections with dowel type fasteners [D]. Delft: Delft University of Technology, 1998.
[9]   XU B H, BOUCHAÏR A, RACHER P Mechanical behavior and modeling of dowelled steel-to-timber moment-resisting connections[J]. Journal of Structural Engineering, 2015, 141 (6): 04014165
doi: 10.1061/(ASCE)ST.1943-541X.0001119
[10]   刘柯珍. 落叶松胶合木梁柱连接节点设计与承载性能评价[D]. 北京: 中国林业科学研究院, 2011.
LIU Kezhe. Connection design and bearing performance evaluation for larch laminated wood beams and columns [D]. Beijing: Chinese Academy of Forestry, 2011.
[11]   周乾, 闫维明, 纪金豹 含嵌固墙体古建筑木结构震害数值模拟研究[J]. 建筑结构, 2010, 40 (1): 100- 103
ZHOU Qian, YAN Weiming, JI Jinbao Study on damage numerical simulation of an ancient wooden building embedded with masonry walls[J]. Building Structure, 2010, 40 (1): 100- 103
[12]   XIONG G Long-term behaviour of steel-strip reinforced wood shaving-cement board roof panel[J]. Cement and Concrete Composites, 1998, 20 (4): 329- 334
doi: 10.1016/S0958-9465(98)00014-6
[13]   GUAN Z, RODD P Modelling of timber joints made with steel dowels and locally reinforced by DVW discs[J]. Structural Engineering and Mechanics, 2003, 16 (4): 391- 404
doi: 10.12989/sem.2003.16.4.391
[14]   DAGHER H J, BRAGDON M. Advanced FRP-wood composites in bridge applications [C]// Structures 2001: A Structural Engineering Odyssey . [S. l.]: ASCE, 2001: 35.
[15]   许云松, 龚永智, 李龙. 某砖木结构的CFRP板加固改造设计与施工[C]// 全国FRP应用技术学术交流会. 济南: [s.n.], 2006: 273–277.
XU Yunsong, GONG Yongzhi, LI Long. Strengthening design and construction with the CFRP slab of a brick-wood structure [C]// National Academic Communication Conference on FRP Application Technology , Jinan: [s.n.], 2006: 273–277.
[16]   李大华, 徐扬, 郑鹄 对山西应县木塔采用纳米复合纤维加固的建议[J]. 山西地震, 2004, (4): 24- 25
LI Dahua, XU Yang, ZHENG Gu Suggestion for reinforcing Yingxian Wooden Tower with millimicron compound fiber[J]. Earthquake Research in Shanxi, 2004, (4): 24- 25
[17]   GLOBA A, SUBHANI M, MOLONEY J et al. Carbon fiber and structural timber composites for engineering and construction[J]. Journal of Architectural Engineering, 2018, 24 (3): 04018018
doi: 10.1061/(ASCE)AE.1943-5568.0000318
[18]   SUBHANI M, GLOBA A, MOLONEY J TimberFRP composite beam subjected to negative bending[J]. Structural Engineering and Mechanics, 2020, 73 (3): 353- 365
[19]   ALAM M A, JUMAAT M Z Experimental investigations on U-and L-shaped end anchored CFRP laminate strengthened reinforced concrete beams[J]. Arabian Journal for Science and Engineering, 2012, 37: 905- 919
doi: 10.1007/s13369-012-0213-6
[20]   DE JESUS A M, PINTO J M T, MORAIS J J L Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths[J]. Construction and Building Materials, 2012, 35: 817- 828
doi: 10.1016/j.conbuildmat.2012.04.124
[21]   TRIANTAFILLOU T C Shear reinforcement of wood using FRP materials[J]. Journal of Materials in Civil Engineering, 1997, 9 (2): 65- 69
doi: 10.1061/(ASCE)0899-1561(1997)9:2(65)
[22]   本社. 正交试验设计法[M]. 上海: 上海科学技术出版社, 1994.
[23]   中华人民共和国住房和城乡建设部. 胶合木结构技术规范: GB/T 50708—2012 [S]. 北京: 中国建筑工业出版社, 2012.
[24]   WU C, FENG P, BAI Y Comparative study on static and fatigue performances of pultruded GFRP joints using ordinary and blind bolts[J]. Journal of Composites for Construction, 2014, 19 (4): 04014065
[25]   徐德良, 刘伟庆, 杨会峰, 等 木材-钢填板螺栓连接的承载能力试验研究[J]. 南京工业大学学报: 自然科学版, 2009, 31 (1): 87- 91
XU Deliang, LIU Weiqing, YANG Huifeng et al. Experimental study on bearing capacity of bolted wood-steel-wood connections in timber structures[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2009, 31 (1): 87- 91
[26]   LIU Y, WANG Y, ZHANG Y, et al Force-displacement relations of bolted timber joints with slotted-in steel plates parallel to the grain[J]. Journal of Wood Science, 2020, 66: 70- 83
doi: 10.1186/s10086-020-01911-1
[27]   邵卓平. 木材和竹材的断裂与损伤[D]. 合肥: 安徽农业大学, 2009.
SHAO Zhuoping. Fracture and damage of wood and bamboo [D]. Hefei: Anhui Agricultural University, 2009.
[28]   邵卓平, 任海青, 江泽慧 柔度法标定木材断裂韧性的研究[J]. 林业科学, 2001, 37 (2): 112- 116
SHAO Zhuoping, REN Haiqing, JIANG Zehui Study on the compliance method for determine wood fracture toughness[J]. Scientia Silvae Sinicae, 2001, 37 (2): 112- 116
doi: 10.3321/j.issn:1001-7488.2001.02.018
[29]   刘良林, 王全凤, 沈章春 基于损伤的累积滞回耗能与延性系数[J]. 地震, 2008, 28 (4): 13- 19
LIU Lianglin, WANG Quanfeng, SHEN Zhangchun Study on accumulated dissipated hysteretic energy and ductility indes based on damage[J]. Earthquake, 2008, 28 (4): 13- 19
doi: 10.3969/j.issn.1000-3274.2008.04.002
[30]   汪佑宏, 费本华, 王传贵, 等 试样厚度及缺角对人工林木材顺纹抗剪强度的影响[J]. 木材工业, 2008, 22 (5): 14- 16
WANG Youhong, FEI Benhua, WANG Chuangui, et al Effects of sample thickness and cutting angle on shear strength parallel to grain[J]. China Wood Industry, 2008, 22 (5): 14- 16
[1] Yong-jian BAI,Yun CHEN,Si ZHANG,Kang CHEN,Shi-jie SU. Orthogonal experiment of fused deposition molding 3D printing drawing defects[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2093-2103.
[2] ZANG Jun chao, ZHENG Ling wei, XIE Xin yu, CAO Li wen, LI Zhuo ming. Electro-osmosis reinforcement experiment of life source polluted soil[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 245-254.
[3] ZHUGE Ping, DING Yong, HOU Su-wei, QIANG Shi-zhong.
Optimization design and fatigue test of new CFRP tendon anchor assembly
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1822-1827.
[4] SUN Xiao-yan, XU Chong, WANG Hai-long, CHU Ji-fang. Overloading simulation fatigue experiment of bridge member
with and without CFRP reinforcement
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1585-1591.