Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 130-139    DOI: 10.3785/j.issn.1008-973X.2024.01.014
    
Analytical study on soil squeezing effect during pile construction with enlarged spudcan
Juntao WU1,2(),Shaohan GENG1,3,Yiran LIANG1,2,Kuihua WANG1,2,Xiaoyang YING4,5
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310063, China
3. The Architecture Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310027, China
4. Zhejiang Dadi Geological Survey and Design Limited Company, Hangzhou 310030, China
5. Zhongtian Construction Group Limited Company, Hangzhou 310016, China
Download: HTML     PDF(1628KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new pre-stressed pipe pile foundation with enlarged spudcan was proposed. Different from the soil squeezing effect of pipe piles with uniform section, the expansion of the pile toe can not be regarded as an ideal sphere by considering the dimension of the spudcan is larger than that of the prefabricated pipe pile, but is much closer to an oblate spheroid (rotational ellipsoid). The construction squeezing displacement field around the new pile foundation with enlarged spudcan was analytically solved based on an oblate spheroid expansion source, and the volume deformation of the plastic region of soil around the pile was considered based on the cavity expansion theory. The calculation results of the oblate spheroid expansion strain path method were modified. The soil squeezing effect of pile foundation with enlarged spudcan was analyzed by employing the analytical solution. Results show that the surrounding soil can be roughly divided into three areas as near the ground surface, near the pile toe and near the pile shaft according to the distribution of the displacement field. The horizontal “squeezing” effect in the area near the pile shaft is slightly enhanced as the shape of the expansion source is more “flat”, while the “uplift” displacement in the area near the ground surface and the vertical displacement in the area near the pile toe are significantly reduced, which is very beneficial for the construction of the squeezing soil type piles.



Key wordsenlarged spudcan      pipe pile      strain path method      cavity expansion      soil squeezing effect     
Received: 13 February 2023      Published: 07 November 2023
CLC:  TU 437  
Fund:  国家自然科学基金资助项目(52108349,52178358);浙江省自然科学基金重点资助项目(LXZ22E080001)
Cite this article:

Juntao WU,Shaohan GENG,Yiran LIANG,Kuihua WANG,Xiaoyang YING. Analytical study on soil squeezing effect during pile construction with enlarged spudcan. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 130-139.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/130


带扩大桩靴桩基施工挤土效应解析研究

提出新型带扩大桩靴预应力管桩基础. 不同于均匀截面管桩的施工挤土效应,由于桩靴尺寸大于预制管桩桩身,桩端扩张不宜视作理想球体而更接近于扁球体(旋转椭球体). 基于扁球体扩张源对新型带扩大桩靴桩基施工挤土位移场进行解析求解,基于圆孔扩张理论考虑桩周土塑性区域的体积变形,对扁球体扩张应变路径法计算结果进行修正. 通过提出的解析解,研究带扩大桩靴桩基施工挤土效应. 结果表明,桩周场地可以根据位移场分布规律,大致分为近地表、近桩端以及桩身附近3个区域. 扩张源形态越“扁”,桩身附近区域水平“排开”效应略有增强,近地表区域地面“隆起”位移及近桩端区域竖向位移显著减小,这对于挤土桩施工而言是非常有益的.


关键词: 扩大桩靴,  管桩,  应变路径法,  圆孔扩张,  挤土效应 
Fig.1 Construction of a project in Zhejiang province employing pre-stressed pipe pile with enlarged spudcan
Fig.2 Schematic of oblate spheroid expansion calculation
Fig.3 Schematic of source-sink method
Fig.4 Schematic of cavity expansion theory considering volume deformation of plastic zone
Fig.5 Comparison of surface displacement solved by degenerated proposed solution and Sagaseta solution
Fig.6 Comparison of surface horizontal displacement field solved by proposed solution and Sagaseta solution considering different correction terms
Fig.7 Comparison of surface vertical displacement field solved by proposed solution and Sagaseta solution considering different correction terms
Fig.8 Displacement field around pile at different pile driving depths (from left to right are displacement field vector diagram, horizontal displacement field contour and vertical displacement field contour)
Fig.9 Displacement field around pile under different expansion patterns (from left to right are displacement field vector diagram, horizontal displacement field contour and vertical displacement field contour)
Fig.10 Displacement field around pile under different expansion dimensions (from left to right are displacement field vector diagram, horizontal displacement field contour and vertical displacement field contour)
[1]   王奎华, 谢康和 变截面阻抗桩受迫振动问题 解析解及应用[J]. 土木工程学报, 1998, 31 (6): 56- 67
WANG Kuihua, XIE Kanghe An analytical solution to force vibration of foundation pile under exciting force and its application[J]. China Civil Engineering Journal, 1998, 31 (6): 56- 67
[2]   吴君涛, 王奎华, 高柳, 等 考虑桩身材料阻尼的桩基纵向振动积分变换解及其应用[J]. 岩石力学与工程学报, 2017, 36 (9): 2305- 2312
WU Juntao, WANG Kuihua, GAO Liu, et al Study on longitudinal vibration of a viscoelastic pile by integral transformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2305- 2312
[3]   吴君涛, 王奎华, 刘鑫, 等 考虑桩身三维效应下的大直径薄壁管桩–桩端土塞耦合振动模型及其解析解[J]. 岩石力学与工程学报, 2019, 38 (5): 1064- 1072
WU Juntao, WANG Kuihua, LIU Xin, et al A large diameter thin-wall pipe pile-soil plug coupled dynamic model considering pile three-dimensional effect and its analytical solution[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (5): 1064- 1072
[4]   吴文兵, 邓国栋, 张家生, 等 考虑横向惯性效应时桩侧土-管桩-土塞纵向耦合振动特性研究[J]. 岩土力学, 2017, 38 (4): 993- 1002
WU Wenbing, DENG Guodong, ZHANG Jiasheng, et al Vertical dynamic response of soil surrounding pile-pipe pile-soil plug by considering lateral inertial effect[J]. Rock and Soil Mechanics, 2017, 38 (4): 993- 1002
[5]   房凯. 桩端后注浆过程中浆土相互作用及其对桩基性状影响研究 [D]. 杭州: 浙江大学, 2013.
FANG Kai. Grout-soil interaction during base grouting and its effects on the behavior of grouted piles [D]. Hangzhou: Zhejiang University, 2013.
[6]   安爱军. 深厚软土地区高速铁路后注浆桩基承载机理与试验研究 [D]. 长沙: 中南大学, 2014.
AN Aijun. Study on experiments and load-bearing mechanism of post grouting for pile foundation of high-speed railway in the deep soft soil region [D]. Changsha: Zhongnan University, 2014.
[7]   周佳锦, 王奎华, 龚晓南, 等 静钻根植抗拔桩承载性能数值模拟[J]. 浙江大学学报: 工学版, 2015, 49 (11): 2135- 2141
ZHOU Jiajin, WANG Kuihua, GONG Xiaonan, et al Numerical simulation on behavior of static drill rooted pile under tension[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2135- 2141
[8]   龚晓南, 解才, 周佳锦, 等 静钻根植竹节桩抗压与抗拔对比研究[J]. 上海交通大学学报, 2018, 52 (11): 1467- 1474
GONG Xiaonan, XIE Cai, ZHOU Jiajin, et al A comparative study on the static drill rooted nodular piles under tension and compression[J]. Journal of Shanghai Jiao Tong University, 2018, 52 (11): 1467- 1474
[9]   吴君涛, 王奎华, 肖偲, 等 静钻根植工法下变截面管桩纵向振动特性分析[J]. 岩石力学与工程学报, 2018, 37 (4): 1030- 1040
WU Juntao, WANG Kuihua, XIAO Si, et al Longitudinal vibration characteristics of static drill rooted tubular pile with variable section[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (4): 1030- 1040
[10]   WU J, WANG K, LIU X Effect of a nodular segment on the dynamic response of a tubular pile subjected to longitudinal vibration[J]. Acta Geotechnica, 2020, 15: 2925- 2940
doi: 10.1007/s11440-020-00930-y
[11]   高柳, 王奎华, 李振亚, 等 考虑桩周土竖向作用和施工扰动效应时大直径楔形桩的纵向振动特性[J]. 振动与冲击, 2018, 37 (2): 30- 37
GAO Liu, WANG Kuihua, LI Zhenya, et al Vertical vibration characteristics of a large diameter tapered pile considering vertical action of surrounding soil and construction disturbance effect[J]. Journal of Vibration and Shock, 2018, 37 (2): 30- 37
[12]   童魏烽. 基于渐变截面模型的楔形桩振动特性研究及应用 [D]. 杭州: 浙江大学, 2019.
TONG Weifeng. Study and application on vibration characteristics of tapered pile based on gradient section model [D]. Hangzhou: Zhejiang University, 2019.
[13]   张新春, 韩春雨, 白云灿, 等 螺旋桩承载特性受桩体几何结构影响的试验研究[J]. 结构工程师, 2019, 35 (2): 178- 183
ZHANG Xinchun, HAN Chunyu, BAI Yuncan, et al The experimental study on the bearing capacity of steel screw piles owing to the effects of geometrical structures of piles[J]. Structural Engineers, 2019, 35 (2): 178- 183
[14]   林祥军, 张魁, 赵成昆, 等 套管螺旋桩抗压承载性能模型试验研究[J]. 江苏建筑, 2021, (6): 95- 97
LIN Xiangjun, ZHANG Kui, ZHAO Chengkun, et al Model test study on compressive bearing characteristics of casing screw pile[J]. Jiangsu Construction, 2021, (6): 95- 97
[15]   张新春, 郝洪策, 胡燃, 等 砂土中螺旋桩纵向振动响应的模型试验研究[J]. 中国工程机械学报, 2021, 19 (6): 530- 535
ZHANG Xinchun, HAO Hongce, HU Ran, et al Model test study on longitudinal vibration response characteristics of screw piles in sand[J]. Chinese Journal of Construction Machinery, 2021, 19 (6): 530- 535
[16]   王奎华, 童魏烽, 吴君涛, 等. 带扩大桩靴桩侧同步灌浆预制桩施工结构及其施工方法: CN108149676A [P]. 2018-06-12.
WANG Kuihua, TONG Weifeng, WU Juntao, et al. Construction structure and method of precast pile with enlarged spudcan and synchronous side grouting: CN108149676A [P]. 2018-06-12.
[17]   SAGASETA C Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987, 37 (3): 301- 320
doi: 10.1680/geot.1987.37.3.301
[18]   SAGASETA C, WHITTLE A J Prediction of ground movements due to pile driving in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127 (1): 55- 66
doi: 10.1061/(ASCE)1090-0241(2001)127:1(55)
[19]   龚晓南, 李向红 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, (4): 7- 12
GONG Xiaonan, LI Xianghong Several mechanical problems in compaction effects of static piling in soft clay ground[J]. Engineering Mechanics, 2000, (4): 7- 12
[20]   黄茂松, 俞剑, 张陈蓉 基于应变路径法的黏土中水平受荷桩p-y曲线[J]. 岩土工程学报, 2015, 37 (3): 400- 409
HUANG Maosong, YU Jian, ZHANG Chenrong P-y curves of laterally loaded piles in clay based on strain path approach[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (3): 400- 409
[21]   汪敏, 储召军, 石少卿, 等 基于应变路径法的压入管桩单桩挤土位移[J]. 后勤工程学院学报, 2015, 31 (4): 23- 30
WANG Min, CHU Zhaojun, SHI Shaoqing, et al Compacting displacement of press in pipe pile based on strain path method[J]. Journal of Logistical Engineering University, 2015, 31 (4): 23- 30
[22]   MÜLLER P, SAÚL A Elastic effects on surface physics[J]. Surface Science Reports, 2004, 54 (5-8): 157- 258
[23]   朱宁, 施建勇, 陈海丰 一种半无限土体中圆孔扩张的分析方法[J]. 岩土力学, 2006, (2): 257- 260
ZHU Ning, SHI Jianyong, CHEN Haifeng A method for cavity expansion in semi-infinite soil[J]. Rock and Soil Mechanics, 2006, (2): 257- 260
[24]   刘裕华, 陈征宙, 彭志军, 等 应用圆孔柱扩张理论对预制管桩的挤土效应分析[J]. 岩土力学, 2007, (10): 2167- 2172
LIU Yuhua, CHEN Zhengzhou, PENG Zhijun, et al Analysis of pile driving effect of precast tubular pile using cylindrical cavity expansion theory[J]. Rock and Soil Mechanics, 2007, (10): 2167- 2172
doi: 10.3969/j.issn.1000-7598.2007.10.031
[25]   周航, 孔纲强, 刘汉龙 基于圆孔扩张理论的静压楔形桩沉桩挤土效应研究[J]. 中国公路学报, 2014, 27 (4): 24- 30
ZHOU Hang, KONG Gangqiang, LIU Hanlong Study on pile sinking compaction effect of hydrostatic wedge pile using cavity expansion theory[J]. China Journal of Highway and Transport, 2014, 27 (4): 24- 30
[26]   徐芝纶. 弹性力学简明教程[M]. 北京: 高等教育出版社, 2013.
[27]   VESIĆ A S Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98 (3): 265- 290
doi: 10.1061/JSFEAQ.0001740
[28]   温世游, 陈云敏, 李夕兵, 等 饱和粘土中平均塑性体积应变对压密注浆的影响[J]. 中国有色金属学报, 2002, (1): 161- 164
WEN Shiyou, CHEN Yunmin, LI Xibing, et al Effects of average plastic volumetric strain on compaction grouting in saturated clay[J]. The Chinese Journal of Nonferrous Metals, 2002, (1): 161- 164
[1] Xiao-wu TANG,Yuan ZOU,Wei-kang LIN,Wen-fang ZHAO,Tian-qi WANG. Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1320-1327.
[2] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[3] WANG Kui-hua, WANG Ning, WU Wen-bing. Influence of weld on integrity testing of prestressed pipe piles[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1625-1632.
[4] ZHANG Zhong-miao, LIU Jun-wei, ZOU Jian, XIE Zhi-zhuan, HE Jing-yu. Experimental study on flexural and shearing property
of reinforced prestressed concrete pipe pile
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1074-1080.
[5] ZHANG Zhong-miao, ZOU Jian, HE Jing-yu, LIN Cun-gang. Cavity expansion theory of compaction grouting in saturated clay
considering pressure filtration
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1980-1984.