|
|
Clustering model of user community subgroup’s demand based on complex networks |
Shu-tao ZHANG1( ),Zhi-qiang YANG1,Shi-jie WANG2,Shi-feng LIU2,Fan ZHANG1,Ai-min ZHOU1,*( ) |
1. School of Design Art, Lanzhou University of Technology, Lanzhou 730050, China 2. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract A new clustering model was proposed to resolve the problem of missing associated information and ambiguous demand change trend in user demand description. The crawler technology was used to obtain user online comments, and the heterogeneous participatory link network was constructed with Jieba word segmentation results. The vocabulary importance was calculated based on the PageRank algorithm, and the PageRank calculation results were used as a basis for filtering to establish a feature vocabulary set. By improving the overlapping community discriminated algorithm, the similarity calculation of subgroup edge attributes was enhanced, and an undirected weighted network of comment feature vocabulary was constructed. By calculating the Jaccard distance, the hierarchical clustering of the network diagram attribute was carried out to determine the user’s purchase decision information. Update the network link with the similarity calculation results of multi-path nodes to achieve the user demand forecasting. Taking a kettle as an example, the improved modularity was 0.69, and the link prediction accuracy rate was 86%. Results show that the proposed clustering model can clarify the potential correlation information of clustering results, and the link prediction results are in line with the objective characteristics of the group effect. The clustering results can assist designers to clarify the needs of user groups in order to target their designs.
|
Received: 01 November 2022
Published: 16 October 2023
|
|
Fund: 国家自然科学基金资助项目(51705226,52165033);甘肃省青年博士基金资助项目(2022QB-047);甘肃省高等学校创新基金资助项目(2021A-020) |
Corresponding Authors:
Ai-min ZHOU
E-mail: zhangsht@lut.edu.cn;51289547@qq.com
|
基于复杂网络的用户社区子群需求聚类模型
用户需求描述存在部分关联信息缺失及需求转变趋势模糊的问题,为此提出新的聚类模型. 利用爬虫技术获取用户在线评论,依据Jieba分词结果构建异质词性有向链路网络,并基于PageRank算法计算词汇重要度,以重要度排序结果筛选特征词汇集. 通过改进重叠模块识别算法,增强子群边属性相似度计算,构建评论特征词汇的无向加权网络;通过计算Jaccard距离开展网络图属性层次聚类,确定用户购买决策信息. 通过多路径节点的相似性计算结果更新网络链路,实现用户需求预测. 以水壶为例,改进的模块度为0.69,链路预测准确率达到86%,表明所提出的聚类模型能够明晰聚类结果潜在关联信息,链路预测结果符合群体效应客观特征,聚类结果可以辅助设计师明晰用户群需求以开展针对性设计工作.
关键词:
用户决策,
复杂网络,
社区发现,
链路预测
|
|
[1] |
张发明, 朱姝琪 社会网络环境下基于群体一致性的概率语言多属性大群体决策方法[J]. 系统管理学报, 2022, 31 (4): 679- 688 ZHANG Fa-ming, ZHU Shu-qi Probabilistic language multi-attribute large group decision-making method based on group consistency in social network analysis[J]. Journal of Systems and Management, 2022, 31 (4): 679- 688
|
|
|
[2] |
罗仕鉴, 朱上上, 应放天, 等 产品设计中的用户隐性知识研究现状与进展[J]. 计算机集成制造系统, 2010, 16 (4): 673- 688 LUO Shi-jian, ZHU Shang-shang, YING Fang-tian, et al Statues and progress of research on users’ tacit knowledge in product design[J]. Computer Integrated Manufacturing Systems, 2010, 16 (4): 673- 688
doi: 10.13196/j.cims.2010.04.3.luoshj.009
|
|
|
[3] |
林丽, 任丽, 阳明庆, 等 基于改进加权协同过滤的集群用户黑箱个性意象预测[J]. 浙江大学学报: 工学版, 2022, 56 (4): 803- 808 LIN Li, REN Li, YANG Ming-qing, et al Prediction of black-box personality image of cluster users based on improved weighted collaborative filtering[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 803- 808
|
|
|
[4] |
WATTS D J, STROGATZ S H Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393: 440- 442
doi: 10.1038/30918
|
|
|
[5] |
BARABASI A L, ALBERT R Emergence of scaling in random networks[J]. Since, 1999, 286 (5439): 509- 512
doi: 10.1126/science.286.5439.509
|
|
|
[6] |
郑文萍, 刘美麟, 杨贵 一种基于节点稳定性和邻域相似性的社区发现算法[J]. 计算机科学, 2022, 49 (9): 83- 91 ZHENG Wen-ping, LIU Mei-lin, YANG Gui Community detection algorithm based on node stability and neighbor similarity[J]. Computer Science, 2022, 49 (9): 83- 91
doi: 10.11896/jsjkx.220400146
|
|
|
[7] |
杨延璞, 龚政, 兰晨昕, 等 工业设计决策网络构建及其动态演化仿真[J]. 浙江大学学报: 工学版, 2021, 55 (12): 2298- 2306 YANG Yan-pu, GONG Zheng, LAN Chen-xin, et al Construction of industrial design decision-making network and its dynamic evolution simulation[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (12): 2298- 2306
|
|
|
[8] |
杨旭华, 王磊, 叶蕾, 等 基于节点相似性和网络嵌入的复杂网络社区发现算法[J]. 计算机科学, 2022, 49 (3): 121- 128 YANG Xu-hua, WANG Lei, YE Lei, et al Complex network community detection algorithm based on node similarity and network embedding[J]. Computer Science, 2022, 49 (3): 121- 128
doi: 10.11896/jsjkx.210200009
|
|
|
[9] |
柯建坤, 许忠好 Louvain算法与K均值聚类算法的比较研究[J]. 应用概率统计, 2022, 38 (5): 780- 790 KE Jian-kun, XU Zhong-hao A comparative study of Louvain algorithm and K-means clustering algorithm[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38 (5): 780- 790
doi: 10.3969/j.issn.1001-4268.2022.05.010
|
|
|
[10] |
李乾瑞, 郭俊芳, 黄颖, 等 基于突变—融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2022, 39 (12): 2129- 2139 LI Qian-rui, GUO Jun-fang, HUANG Ying, et al Topic evolution research of disruptive technology based on mutation and fusion perspective[J]. Studies in Science of Science, 2022, 39 (12): 2129- 2139
doi: 10.3969/j.issn.1003-2053.2022.12.003
|
|
|
[11] |
ANDREA L, SANTO F, KERTESZ J, et al Detecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009, 11: 033015
doi: 10.1088/1367-2630/11/3/033015
|
|
|
[12] |
PANTHADEEP B, PINAKI M A survey of density based clustering algorithms[J]. Frontiers of Computer Science, 2020, 15 (1): 139- 165
|
|
|
[13] |
段庆锋, 陈红, 刘东霞, 等 基于LSTM模型与加权链路预测的学科新兴主题成长性识别研究[J]. 现代情报, 2022, 42 (9): 37- 48 DUAN Qing-feng, CHEN Hong, LIU Dong-xia, et al Identifying growth of discipline topics using LSTM and weighted link prediction[J]. Journal of Modern Information, 2022, 42 (9): 37- 48
doi: 10.3969/j.issn.1008-0821.2022.09.004
|
|
|
[14] |
杨延璞 基于犹豫模糊语言术语集和粒子群优化算法的产品造型设计感性评价方法[J]. 图学学报, 2021, 42 (4): 680- 687 YANG Yan-pu Kansei evaluation method of product form design based on hesitant fuzzy linguistic term sets and particle swarm optimization[J]. Journal of Graphics, 2021, 42 (4): 680- 687
|
|
|
[15] |
刘琳岚, 宋修洋, 陈宇斌 基于网络表示学习的机会网络链路预测[J]. 北京邮电大学学报, 2022, 45 (4): 64- 69 LIU Lin-lan, SONG Xiu-yang, CHEN Yu-bin Link prediction in opportunistic networks based on network representation learning[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45 (4): 64- 69
|
|
|
[16] |
杨智勇, 许倩倩, 何源, 等 半监督AUC优化的Boosting算法及理论[J]. 计算机学报, 2022, 45 (8): 1598- 1617 YANG Zhi-Yong, XU Qian-qian, HE Yuan, et al Boosting-based semi-supervised AUC optimization: theory and algorithm[J]. Chinese Journal of Computers, 2022, 45 (8): 1598- 1617
doi: 10.11897/SP.J.1016.2022.01598
|
|
|
[17] |
娄策群, 李罗佶, 王雪莹 基于Kano模型的B2C电商平台信息服务功能研究[J]. 现代情报, 2021, 41 (4): 26- 35 LOU Ce-qun, LI Luo-ji, WANG Xue-ying Research on information service function of B2C E-commerce platform based on Kano model[J]. Journal of Modern Information, 2021, 41 (4): 26- 35
doi: 10.3969/j.issn.1008-0821.2021.04.004
|
|
|
[18] |
景瑶, 郭斌, 王柱, 等 基于群体智能挖掘的个性化商品评论呈现方法[J]. 浙江大学学报: 工学版, 2017, 51 (4): 675- 681 JING Yao, GUO Bin, WANG Zhu, et al CrowdReview: personalized product review presentation based on crowd intelligence mining[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (4): 675- 681
|
|
|
[19] |
陆蔚华, 倪祎寒, 蔡志彬, 等 用户评论数据驱动的产品优化设计方法[J]. 计算机辅助设计与图形学学报, 2022, 34 (3): 482- 490 LU Wei-hua, NI Yi-han, CAI Zhi-bin, et al User review data-driven product optimization design method[J]. Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (3): 482- 490
|
|
|
[20] |
苏青 网络爬虫的演变及其合法性限定[J]. 比较法研究, 2021, (3): 89- 104 SU Qing Evolution of web crawling and conditions for its legitimacy[J]. Journal of Comparative Law, 2021, (3): 89- 104
|
|
|
[21] |
GU K, FAN Y, DI Z Signed pageRank on online rating systems[J]. Journal of Systems Science and Complexity, 2022, 35: 58- 80
doi: 10.1007/s11424-021-0124-2
|
|
|
[22] |
鲍阳, 杨志斌, 杨永强, 等 基于限定中文自然语言需求的SysML模型自动生成方法[J]. 计算机研究与发展, 2021, 58 (4): 706- 730 BAO Yang, YANG Zhi-bin, YANG Yong-qiang, et al An automated approach to generate SysML models from restricted natural language requirements in chinese[J]. Journal of Computer Research and Development, 2021, 58 (4): 706- 730
doi: 10.7544/issn1000-1239.2021.20200757
|
|
|
[23] |
郭景峰, 刘苗苗, 罗旭 加权网络中基于多路径节点相似性的链接预测[J]. 浙江大学学报: 工学版, 2016, 50 (7): 1347- 1352 GUO Jing-feng, LIU Miao-miao, LUO Xu Link prediction based on similarity of nodes of multipath in weighted social networks[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1347- 1352
|
|
|
[24] |
赵文涛, 张烁 稀疏数据下基于用户偏好的协同过滤算法[J]. 重庆邮电大学学报: 自然科学版, 2021, 33 (4): 669- 674 ZHAO Wen-tao, ZHANG Shuo Collaborative filtering algorithm based on user preference in sparse data[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2021, 33 (4): 669- 674
|
|
|
[25] |
蒋璐, 陈云伟 多节点多关系的混合网络社团划分研究综述[J]. 图书情报工作, 2021, 65 (19): 142- 150 JIANG Lu, CHEN Yun-wei A review of community detection in hybrid networks with multiple nodes and multiple relationships[J]. Library and Information Service, 2021, 65 (19): 142- 150
doi: 10.13266/j.issn.0252-3116.2021.19.014
|
|
|
[26] |
方祺娜, 许小可 基于异质模体特征的社交网络链路预测[J]. 电子科技大学学报, 2022, 51 (2): 274- 281 FANG Qi-na, XU Xiao-ke Link prediction by hetergeneous motifs in social networks[J]. Journal of University of Electronic Science and Technology of China, 2022, 51 (2): 274- 281
doi: 10.12178/1001-0548.2021181
|
|
|
[27] |
陈嘉钰, 李艳 基于LDA主题模型的社交媒体倦怠研究: 以微信为例[J]. 情报科学, 2019, 37 (12): 78- 86 CHEN Jia-yu, LI Yan Social media fatigue research based on LDA topic model: take WeChat as an example[J]. Information Science, 2019, 37 (12): 78- 86
doi: 10.13833/j.issn.1007-7634.2019.12.012
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|