Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1470-1478    DOI: 10.3785/j.issn.1008-973X.2023.07.022
    
Factor extraction and SOH estimation of lithium-ion battery based on temperature and SOC
Hao DONG(),Ling MAO*(),Ke-qing QU,Jin-bin ZHAO,Fen LI
College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Download: HTML     PDF(1630KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The changing curve of the state of charge (SOC) and charging voltage of lithium-ion batteries (LIB) at different temperatures was analyzed in order to solve the problems of insufficient data acquisition and difficulty in extracting health factors (HFs) during the daily use of LIB. A method for LIB HFs extraction and online estimation of state of health (SOH) considering temperature and SOC was proposed. The charging voltage and current were selected as HFs according to the ambient temperature difference during the actual charging process of the battery. Then the network parameters of the extreme learning machine were optimized by the genetic-hill climbing algorithm, and the mapping relationship between the HFs and the SOH was established to realize the online SOH estimation. Nine groups of NASA LIB aging data were used for verification. Results show that the proposed method has the advantages of high estimation accuracy and strong adaptability for ambient temperature.



Key wordsdaily SOC      genetic-hill climbing algorithm      extreme learning machine (ELM)      health factor      online estimation of SOH     
Received: 21 July 2022      Published: 17 July 2023
CLC:  TM 912  
Fund:  国家自然科学基金资助项目(52177184)
Corresponding Authors: Ling MAO     E-mail: 1132566511@qq.com;maoling2290@shiep.edu.cn
Cite this article:

Hao DONG,Ling MAO,Ke-qing QU,Jin-bin ZHAO,Fen LI. Factor extraction and SOH estimation of lithium-ion battery based on temperature and SOC. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1470-1478.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.022     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1470


基于温度和SOC的锂离子电池特征提取及SOH估计

为了解决电池日常使用过程中数据量获取不足和健康因子提取难的问题,通过分析不同温度下锂离子电池的荷电状态(SOC)与充电电压的变化曲线,提出基于温度和SOC的锂离子电池健康因子提取及健康状态(SOH)在线估计的方法. 在电池的实际充电过程中,根据环境温度差异选取电压和电流作为健康因子. 利用遗传-爬山算法优化极限学习机的网络参数,建立健康因子和SOH的映射关系,实现SOH在线估计. 使用9组NASA电池老化数据进行验证,结果表明,本文方法具有估计精度高、环境温度适应性强的优点.


关键词: 日常SOC,  遗传-爬山算法,  极限学习机(ELM),  健康因子,  SOH在线估计 
电池编号 Id/A QN/(A·h) te/℃ Ve/V
B0005 2 2 24 2.7
B0006 2 2 24 2.5
B0018 2 2 24 2.5
B0030 4 2 43 2.2
B0031 4 2 43 2.5
B0032 4 2 43 2.7
B0054 2 2 4 2.2
B0055 2 2 4 2.5
B0056 2 2 4 2.7
Tab.1 Li-ion batteries parameters and operating conditions
Fig.1 Voltage and current change curves at different SOH and SOC change curves at different temperatures
Fig.2 Extraction of health factor
Fig.3 Structure of extreme learning machine
Fig.4 Frame diagram of extreme learning machine based on GA-HC
te/℃ 电池编号 Vo/V Δt/s P
24 B0005 4.05 300 0.985 7
24 B0006 4.05 300 0.982 2
24 B0018 4.05 300 0.981 4
43 B0030 4.00 600 0.983 1
43 B0031 4.00 600 0.971 3
43 B0032 4.00 600 0.982 8
Tab.2 Correlation analysis of health factors at room temperature and high temperature
te/℃ 电池编号 Io/A Δt/s P
4 B0054 1.4 1000 0.9467
4 B0055 1.4 1000 0.9562
4 B0056 1.4 1000 0.9123
Tab.3 Correlation analysis of health factors at low temperature
Fig.5 SOH estimation results and errors at room temperature
方法 电池编号 MAE/% MAPE/% RMSE/%
ELM B0005 1.68 1.91 1.95
ELM B0006 21.93 31.68 32.93
ELM B0018 3.15 3.91 3.25
GA-HC-ELM B0005 0.63 0.82 0.86
GA-HC-ELM B0006 0.43 0.64 0.65
GA-HC-ELM B0018 0.75 0.96 0.93
Tab.4 Error in SOH estimation results at room temperature
Fig.6 Estimation result and error of SOH at low temperature
方法 电池编号 MAE/% MAPE/% RMSE/%
ELM B0054 4.28 5.02 4.84
ELM B0055 1.69 2.15 2.07
ELM B0056 1.79 2.03 2.25
GA-HC-ELM B0054 1.08 1.33 1.41
GA-HC-ELM B0055 1.09 1.35 1.32
GA-HC-ELM B0056 1.36 1.56 1.61
Tab.5 Error in SOH estimation results at low temperature
Fig.7 Estimation result and error of SOH at high temperature
方法 电池编号 MAE/% MAPE/% RMSE/%
ELM B0030 2.74 2.93 3.07
ELM B0031 1.71 1.79 1.98
ELM B0032 0.93 1.03 1.13
GA-HC-ELM B0030 0.54 0.59 0.71
GA-HC-ELM B0031 0.59 0.63 0.74
GA-HC-ELM B0032 0.48 0.53 0.56
Tab.6 Errors of SOH estimation results at high temperature
方法 RMSEav/% tav/s
低温 常温 高温
ELM 3.05 2.60 2.06 0.814
LSTM 2.47 1.93 2.14 13.316
GPR 1.86 1.37 1.14 3.276
GA-HC-ELM 1.44 0.81 0.67 3.941
Tab.7 Comparison of ELM, LSTM, GPR, and GA-HC-ELM models
[1]   王萍, 弓清瑞, 张吉昂, 等 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36 (24): 5201- 5212
WANG Ping, GONG Qing-rui, ZHANG Ji-ang, et al An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36 (24): 5201- 5212
doi: 10.19595/j.cnki.1000-6753.tces.210385
[2]   杨胜杰, 罗冰洋, 王菁, 等 基于容量增量曲线峰 值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36 (11): 2277- 2287
YANG Sheng-jie, LUO Bing-yang, WANG Jing, et al State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36 (11): 2277- 2287
[3]   DONG G, YANG F, WEI Z, et al Data-driven battery health prognosis using adaptive brownian motion model[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (7): 4736- 4746
doi: 10.1109/TII.2019.2948018
[4]   胡天中, 余建波 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1852- 1864
HU Tian-zhong, YU Jian-bo Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1852- 1864
[5]   XIONG R, TIAN J, MU H, et al A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries[J]. Applied Energy, 2017, 207: 372- 383
doi: 10.1016/j.apenergy.2017.05.124
[6]   FANG L, LI Q, PENG B. Online estimation and error analysis of both SOC and SOH of lithium-ion battery based on DEKF method [J]. Energy Procedia, 2019, 158: 3008-3013.
[7]   BURGOS C, ORCHARD M, KAZERANI M, et al Particle-filtering-based estimation of maximum available power state in lithium-ion batteries[J]. Applied Energy, 2016, 161: 349- 363
doi: 10.1016/j.apenergy.2015.09.092
[8]   ZHONG Y, HUANG M, CHEN Y, et al A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: 1- 10
doi: 10.1016/j.jpowsour.2016.04.119
[9]   周頔, 宋显华, 卢文斌, 等 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39 (1): 105- 111
ZHOU Di, SONG Xian-hua, LU Wen-bin, et al Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39 (1): 105- 111
doi: 10.13334/j.0258-8013.pcsee.181026
[10]   LIU W, XU Y Data-driven online health estimation of Li-ion batteries using a novel energy-based health indicator[J]. IEEE Transactions on Energy Conversion, 2020, 35 (3): 1715- 1718
doi: 10.1109/TEC.2020.2995112
[11]   徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704.
XU Jia-ning, NI Yu-long, ZHU Chun-bo. Remaining useful life prediction for lithium-ion batteries based on improved support vector [J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704.
[12]   樊亚翔, 肖飞, 许杰, 等 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 675 (16): 5661- 5670
FAN Ya-xiang, XIAO Fei, XU Jie, et al State of health estimation of lithium-ion batteries based on the partial charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 675 (16): 5661- 5670
doi: 10.13334/J.0258-8013.PCSEE.201805
[13]   韩乔妮, 姜帆, 程泽 变温度下IHF-IGPR框架的锂离子电池健康状态预测方法[J]. 电工技术学报, 2021, 36 (17): 3705- 3720
HAN Qiao-ni, JIANG Fan, CHENG Ze State of health estimation for lithium-ion batteries based on the framework of IHF-IGPR under variable temperature[J]. Transactions of China Electrotechnical Society, 2021, 36 (17): 3705- 3720
doi: 10.19595/j.cnki.1000-6753.tces.201593
[14]   刘先庆, 王长宏, 吴婷婷 锂离子电池老化机理及综合利用综述[J]. 电池, 2022, 52 (2): 223- 227
LIU Xian-qing, WANG Chang-hong, WU Ting-ting Review of aging mechanism and comprehensive use of Li-ion battery[J]. Battery, 2022, 52 (2): 223- 227
[15]   王聪聪, 叶思成, 裴春兴, 等 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51 (2): 197- 200
WANG Cong-cong, YE Si-cheng, PEI Chun-xing, et al Review on battery state-of-health experiment and estimation methods[J]. Battery, 2021, 51 (2): 197- 200
doi: 10.19535/j.1001-1579.2021.02.022
[16]   ZHANG Y, DUCHI J, WAINWRIGHT M Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates[J]. The Journal of Machine Learning Research, 2015, 16 (1): 3299- 3340
[1] Le-wei ZHI,Jiao-liao CHEN,Jia-cai WANG,Fang XU,Li-bin ZHANG. Deflection angle perception and recognition method of robot spline assembly based on parameter optimization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 452-461.
[2] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[3] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1339-1346.
[4] QIU Ri hui, LIU Kang ling, TAN Hai long, LIANG Jun. Classification algorithm based on extreme learning machine and its application in fault identification of Tennessee Eastman process[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1965-1972.