Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1147-1156    DOI: 10.3785/j.issn.1008-973X.2023.06.010
    
Temperature measurement point selection method of multi-machine tool based on weighted fusion matrix system clustering
Xiao-lei DENG1(),Yu-shen CHEN2,Cheng-zhi FANG1,Da-sha MEN1,Xiao-liang LIN1,Shao-fei JIANG2
1. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download: HTML     PDF(2353KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the selection and optimization of temperature key points in thermal error modeling of different CNC machine tools, a new method was proposed to effectively reduce the temperature measurement points and improve the prediction accuracy of thermal error. The method could effectively classify and select temperature measuring points by establishing the correlation and difference between various temperature signal sequences. On the basis of system clustering, the correlation coefficients between variables and Euclidean distance matrix were weighted and fused to optimize the collinearity between measurement points. Then, grey correlation analysis was used to determine the degree of closeness between measuring points and thermal errors, and the optimal measuring points in various subsets were extracted. A thermal error prediction model based on support vector regression was constructed with the optimized measuring points as input. In order to determine the weight coefficient, the number of clusters and the parameters of support vector regression, the optimal prediction model was obtained by using genetic algorithm for parameter optimization. Finally, the proposed method was validated on several machine tools, and the verification and analysis results of three different machine tools were given. The root mean square error of predictions using the proposed method decreased by 24%, 71% and 62% compared with those using the original measurement points, respectively. The results showed that the proposed method can effectively improve the prediction accuracy of the thermal error model on different machine tools under the premise of greatly reducing the number of sensors. The proposed method has good versatility and the predictive performance of the method is stronger compared to other methods.



Key wordssystem clustering      measuring point correlation      multi-machine versatility      thermal error modeling      grey correlation degree method     
Received: 12 May 2022      Published: 30 June 2023
CLC:  TH 161  
Fund:  国家自然科学基金资助项目(52175472);浙江省自然科学基金资助项目(LZY21E050002);浙江省公益技术应用研究资助项目(LGG22E050031);浙江省教育厅科研资助项目(Y201942770)
Cite this article:

Xiao-lei DENG,Yu-shen CHEN,Cheng-zhi FANG,Da-sha MEN,Xiao-liang LIN,Shao-fei JIANG. Temperature measurement point selection method of multi-machine tool based on weighted fusion matrix system clustering. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1147-1156.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.010     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1147


基于加权融合矩阵系统聚类的多机床温度测点选择方法

针对不同数控机床热误差建模中温度关键点的选择和优化问题,提出有效减少温度测点并提高热误差预测精度的新方法. 所提方法通过建立各个温度信号序列之间的相关性和差异性,对温度测点进行有效分类和选择. 在系统聚类的基础上,将变量间的相关系数与欧氏距离矩阵进行权重赋值后加以融合,以优化各测点之间的共线性. 利用灰色关联分析判断测点与热误差间的紧密程度并提取各类子集中的最优测点,以优化后的测点为输入构建基于支持向量回归的热误差预测模型. 为了确定权重系数、聚类数、支持向量回归的参数,采用遗传算法进行参数寻优得到最优的预测模型. 在多台机床上进行实验,列举出3台不同型号机床的验证分析结果,使用所提方法的预测均方根误差与原始测点的相比分别下降了24%、71%和62%. 结果表明,所提方法在不同机床上均能实现在大幅减少传感器数量的前提下有效提高热误差模型预测精度;所提方法具有良好的通用性,与其他方法相比,所提方法的预测性能更强.


关键词: 系统聚类,  测点关联性,  多机床通用性,  热误差建模,  灰色关联度法 
Fig.1 Thermal state characteristics acquisition experiment of machine tool Ⅰ
传感器编号 传感器位置
T1、T2、T3、T4 主轴
T6 主轴箱正面
T11、T9、T14 主轴箱内部
T7、T10 主轴箱侧面
T5、T8 电机底座
T12、T13、T15 电机外壳
T16 外部环境
Tab.1 Temperature sensor distribution of machine tool Ⅰ
Fig.2 Sensor layout of machine tool Ⅰ
Fig.3 Temperature rise-time curves for machine tool Ⅰ at 4 000 r/min
Fig.4 Thermal error-time curve for machine tool Ⅰ at 4 000 r/min
Fig.5 Partial curve of temperature rise-time for machine tool Ⅰ at 4 000 r/min
Fig.6 Overall flow of measuring point optimization method
Fig.7 Grey correlation degree of each temperature series
Fig.8 Process of out genetic algorithm
Fig.9 Clustering tree of improved system clustering method
Fig.10 Comparison of prediction results before and after optimization of measuring points of machine Ⅰ
Fig.11 Comparison diagram of residual prediction of machine tool Ⅰ thermal error model under different measuring point optimization schemes
评估指标 RMSE/μm MAE/μm
方案① 1.014 0.906
方案② 0.770 0.626
方案③ 1.119 1.042
方案④ 0.987 0.895
方案⑤ 1.256 1.101
Tab.2 Evaluation of thermal error model for machine tool Ⅰ under different measuring point optimization schemes
Fig.12 Thermal characteristics acquisition of machine tool Ⅱ, Ⅲ
传感器编号 传感器位置
T1、T2 主轴伸出端底部
T3、T4 主轴伸出端侧部
T5 法兰盘
T6 电机
T7、T8、T10 主轴箱侧面
T11、T15 主轴箱正面
T9、T12 主轴箱凹槽
T13 室温
T14 台虎钳
Tab.3 Temperature sensor distribution of machine tool Ⅱ
传感器编号 传感器位置
T1 主轴伸出端底部
T2、T3 主轴伸出端侧部
T4 法兰盘
T5、T8、T13 主轴箱凹槽
T6、T9、T10 主轴箱侧面
T7 箱体顶盖
T11、T12 电机
T14 室温
Tab.4 Temperature sensor distribution of machine tool Ⅲ
Fig.13 Temperature sensor layout of machine tool Ⅱ, Ⅲ
实验对象 机床Ⅱ 机床Ⅲ
RMSE/μm MAE/μm RMSE/μm MAE/μm
方案① 4.162 3.957 2.883 2.502
方案② 1.200 1.119 1.106 0.852
方案③ 3.170 3.102 2.433 2.261
方案④ 1.861 1.800 2.179 1.767
方案⑤ 3.089 3.024 2.084 1.848
Tab.5 Evaluation of thermal error model for two validation machine tools under different measuring point optimization schemes
Fig.14 Comparison diagram of prediction results and residuals of two validation machine tools under different measuring point optimization schemes
[1]   邓小雷, 林欢, 王建臣, 等 机床主轴热设计研究综述[J]. 光学精密工程, 2018, 26 (6): 1415- 1429
DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al Review on thermal design of machine tool spindles[J]. Optics and Precision Engineering, 2018, 26 (6): 1415- 1429
doi: 10.3788/OPE.20182606.1415
[2]   LI Y, ZHAO W, LAN S, et al A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 95: 20- 38
doi: 10.1016/j.ijmachtools.2015.04.008
[3]   LIU Y, YONG L, DONG G, et al Thermally induced volumetric error modeling based on thermal drift and its compensation in Z-axis [J]. International Journal of Advanced Manufacturing Technology, 2013, 69: 2735- 2745
doi: 10.1007/s00170-013-5237-x
[4]   HAN J, WANG L, WANG H, et al A new thermal error modeling method for CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2012, 62: 205- 212
doi: 10.1007/s00170-011-3796-2
[5]   GUO Q, FAN S, XU R, et al Spindle thermal error optimization modeling of a five-axis machine tool[J]. Chinese Journal of Mechanical Engineering, 2017, 30: 746- 753
doi: 10.1007/s10033-017-0098-0
[6]   LUO J Y, JIAN B L Establishment of low-cost and stable prediction modals applied for thermal displacements in three axes[J]. IEEE Sensors Journal, 2022, 22 (17): 17031- 17042
doi: 10.1109/JSEN.2022.3192547
[7]   MA C, ZHAO L, MEI X, et al Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 3071- 3085
doi: 10.1007/s00170-016-9254-4
[8]   CHENG Q, QI Z, ZHANG G, et al Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83: 753- 764
doi: 10.1007/s00170-015-7556-6
[9]   ZHU M, YANG Y, FENG X, et al Robust modeling method for thermal error of CNC machine tools based on random forest algorithm[J]. Journal of Intelligent Manufacturing, 2023, 34: 2013- 2026
doi: 10.1007/s10845-021-01894-w
[10]   LI Z, LI G, XU K, et al Temperature-sensitive point selection and thermal error modeling of spindle based on synthetical temperature information[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 1029- 1043
doi: 10.1007/s00170-021-06680-9
[11]   蔡德程, 陈缤, 关欣, 等 机床热特性优化研究综述[J]. 上海理工大学学报, 2021, 43 (5): 443- 451
CAI De-cheng, CHEN Bin, GUAN Xin, et al Review on optimization of thermal characteristics of machine tools[J]. Journal of University of Shanghai for Science and Technology, 2021, 43 (5): 443- 451
doi: 10.13255/j.cnki.jusst.20201230002
[12]   FU G, GONG H, GAO H, et al Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 2039- 2055
doi: 10.1007/s00170-019-04388-5
[13]   FU G, ZHOU L, LEI G, et al A universal ensemble temperature-sensitive point combination model for spindle thermal error modeling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 3377- 3393
doi: 10.1007/s00170-021-08465-6
[14]   YANG L, ZHAO J, JI S A reconstructed variable regression method for thermal error modeling of machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90: 3673- 3684
doi: 10.1007/s00170-016-9648-3
[15]   ZHOU Z, HU J, LIU Q, et al The selection of key temperature measurement points for thermal error modeling of heavy-duty computer numerical control machine tools with density peaks clustering[J]. Advances in Mechanical Engineering, 2019, 11 (4): 1- 11
[16]   李逢春, 王海同, 李铁民 重型数控机床热误差建模及预测方法的研究[J]. 机械工程学报, 2016, 52 (11): 154- 160
LI Feng-chun, WANG Hai-tong, LI Tie-min Research on thermal error modeling and prediction of heavy CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52 (11): 154- 160
doi: 10.3901/JME.2016.11.154
[17]   LI F, LI T, WANG H, et al A temperature sensor clustering method for thermal error modeling of heavy milling machine tools[J]. Applied Sciences, 2017, 7 (1): 82
doi: 10.3390/app7010082
[18]   张伟, 叶文华 基于灰色关联和模糊聚类的机床温度测点优化[J]. 中国机械工程, 2014, 25 (4): 456- 460
ZHANG Wei, YE Wen-hua Optimization of temperature measuring points for machine tools based on grey correlation and fuzzy clustering analysis[J]. China Mechanical Engineering, 2014, 25 (4): 456- 460
doi: 10.3969/j.issn.1004-132X.2014.04.006
[19]   苗恩铭, 龚亚运, 成天驹, 等 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学精密工程, 2013, 21 (4): 980- 986
MIAO En-ming, GONG Ya-yun, CHENG Tian-ju, et al Application of support vector regression machine to thermal error modelling of machine tools[J]. Optics Precision Engineering, 2013, 21 (4): 980- 986
doi: 10.3788/OPE.20132104.0980
[1] Zhi HUANG,Zhen-jie JIA,Tao DENG,Yong-chao LIU,Li DU. Thermal error compensation of static pressure turntable based on support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1594-1601.
[2] XIE Jie, HUANG Xiao-diao, FANG Cheng-gang, ZHOU Bao-cang, LU Ning. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 247-254.