Considering the effect of terminal distribution service mode on service quality and distribution cost, a mixed integer programming model was established with the bi-objectives of distribution cost and customer satisfaction, and NSGA-Ⅱ was improved to solve the model. The validity of the model was verified by the solver GUROBI. The performance of improved NSGA-Ⅱ solution was proved to be stable by solving several cases. The improved NSGA-Ⅱ could obtain high-quality Pareto solution sets with only 1/10 of the computation time of GUROBI. Compared with the traditional NSGA-Ⅱ, the computation time only increased 23 s on average, while the quality of solutions improved 3.37% on average. The improved NSGA-Ⅱ was superior to the GUROBI solver and the traditional NSGA-Ⅱ. The sensitivity analysis shows that the comprehensive utilization of multiple distribution modes is better than the single distribution mode in balancing profit and customers’ satisfaction levels. The distribution cost can be reduced by reasonably increasing the number of parcel lockers and pick-up points and widening customers’ time windows.
Jing-shuai YANG,Yu-e YANG,Man-man LI,Yuan-yuan LI. Joint optimization of terminal distribution service mode and distribution routing. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 900-910.
Fig.6Multi-point crossing operator of improved NSGA-Ⅱ
Fig.7POCSX crossing operator of improved NSGA-Ⅱ
Fig.8Inversion mutation operator of improved NSGA-Ⅱ
参数
取值
参数
取值
${v_{\text{c}}}$/(km·h?1)
60
${\theta _1}$/(元·h?1)
1.00
$Q$
200
${\theta _2}$/(元·h?1)
3.00
${c_{\text{d}}}$/(元·km?1)
1
${c_1}$/元
2.18
${c_{\text{v}}}$/元
100
${c_2}$/元
1.71
${\rm{C}}{{\rm{S}}_{\min } }$
0.7
${c_3}$/元
1.38
Tab.3Experimental parameters and values
配送路径
约束检验
末端配送服务模式
车辆载重
时间窗
选择模式
是否为接受模式
累计载重
是否超载
到达时间/min
客户收货时间窗
1
1
是
0
否
0
[0,1 236]
↓
6
2
是
2
否
38.42
[15,67]
↓
3
2
是
22
否
48.42
[825,870]
↓
4
3
是
30
否
77.39
[65,146]
↓
5
3
是
49
否
87.39
[727,782]
↓
2
1
是
72
否
105.88
[912,967]
↓
1
1
是
72
否
119.30
[0,1 236]
Tab.4GUROBI results of small-scale example
算例规模
${C_1}$/元
${C_2}$/元
${\rm{Gap}}$/%
5
328.14
331.32
0.97
10
427.52
433.09
1.30
15
691.35
702.68
1.64
20
864.72
875.12
1.20
25
1 139.30
1 157.45
1.59
30
1 401.65
1 423.59
1.57
35
1 549.90
1 566.23
1.05
40
1 908.04
1 924.35
0.85
60
2 768.94
2 797.44
1.03
80
3 605.01
3 652.57
1.32
100
4 712.09
4 759.59
1.01
Tab.5Algorithm stability analysis of improved NSGA-Ⅱ
客户规模
GUROBI
传统NSGA-Ⅱ
改进NSGA-Ⅱ
${C_4}$/元
${t_1}$/s
${C_{\text{3}}}$/元
${t_2}$/s
$ {\rm{Ga}}{{\rm{p}}_1} $/%
${C_1}$/元
${t_1}$/s
$ {\rm{Ga}}{{\rm{p}}_2} $/%
注:表中加粗数据为最优配送总成本.
5
328.14
0.62
328.14
7.84
0.00
328.14
7.95
0.00
8
379.81
13.61
379.81
8.24
0.00
379.81
8.10
0.00
10
427.52
1 907
427.52
7.04
0.00
427.52
11.17
0.00
12
485.95
2 000
486.84
19.25
0.18
486.45
13.84
0.10
15
691.84
2 000
693.03
11.78
0.17
691.35
15.45
?0.07
18
778.49
2 000
853.26
23.61
9.60
777.19
17.21
?0.17
20
862.31
2 000
867.34
21.92
0.58
864.72
32.60
0.28
22
1 041.16
2 000
1 098.32
25.14
5.49
1 041.16
32.00
0.00
25
1 141.36
2 000
1 192.04
64.77
4.44
1 139.30
75.75
?0.18
28
1 374.71
2 000
1 398.04
31.52
1.70
1 378.31
47.96
0.26
30
1 400.46
2 000
1 424.48
47.63
1.72
1 401.65
91.76
0.09
32
1 438.93
2 000
1 481.33
72.40
2.95
1 432.38
97.74
?0.46
35
1 568.04
2 000
1 658.35
81.48
5.76
1 549.90
91.25
?1.16
40
?
?
1 933.94
103.15
?
1 908.04
144.67
?
60
?
?
2 857.98
114.22
?
2 768.94
198.44
?
80
?
?
3 812.10
171.75
?
3 605.01
252.70
?
100
?
?
4 922.93
230.35
?
4 712.09
292.69
?
Tab.6Performances of three algorithms to solve terminal distribution service mode and routing model
Fig.9Pareto frontier of 60 customer cases
算例规模
模式
目标
C/元
S
30
送货上门
1 768.64
0.87
自提柜
1 398.08
0.65
自提点
1 205.29
0.54
混合模式
1 401.65
0.79
40
送货上门
2 386.60
0.90
自提柜
1 890.74
0.66
自提点
1 616.21
0.54
混合模式
1 908.04
0.81
60
送货上门
3 570.58
0.88
自提柜
2 720.96
0.65
自提点
2 297.28
0.54
混合模式
2 768.94
0.80
80
送货上门
4 581.11
0.87
自提柜
3 454.38
0.65
自提点
3 004.65
0.55
混合模式
3 605.01
0.80
100
送货上门
5 767.31
0.86
自提柜
4 352.84
0.65
自提点
3 969.52
0.55
混合模式
4 712.09
0.81
Tab.7Distribution cost and customer satisfaction with different terminal distribution service modes
配送方案
对比值
C/元
Ct/元
Cf/元
Cs/元
Cw/元
7个自提柜+5个自提点
4 712.09
927.08
800.00
2 462.59
522.42
10个自提柜+8个自提点
4 596.15
816.94
800.00
2 450.18
529.03
Tab.8Lowest cost distribution scheme with different number of parcel lockers and pick-up points
Fig.10Minimum distribution cost with different time window width multiples
原时间窗宽度
对比值
C/元
Ct/元
Cf/元
Cs/元
Cw/元
0.8倍原时间窗宽度
4 725.60
943.43
800.00
2 424.22
557.95
2.0倍原时间窗宽度
4 592.54
945.67
800.00
2 414.25
432.62
Tab.9Distribution schemes with different time window width multiples
[15]
周翔, 许茂增, 吕奇光, 等 基于客户点行政地址的自提点选址—路径优化[J]. 计算机集成制造系统, 2019, 25 (8): 2069- 2078 ZHOU Xiang, XU Mao-zeng, LV Qi-guang, et al Location-routing problem of pickup point based on administrative address of customer points[J]. Computer Integrated Manufacturing Systems, 2019, 25 (8): 2069- 2078
doi: 10.13196/j.cims.2019.08.021
[16]
邱晗光, 李海南, 宋寒 需求依赖末端交付与时间窗的城市配送自提柜选址—路径问题[J]. 计算机集成制造系统, 2018, 24 (10): 2612- 2621 QIU Han-guang, LI Hai-nan, SONG Han Reception box locating-vehicle routing problems in urban distribution considering demand depending on last-mile delivery and time slots[J]. Computer Integrated Manufacturing Systems, 2018, 24 (10): 2612- 2621
[17]
戴海燕. 基于随机选择行为的“最后一公里”配送自提点选址与路径规划研究[D]. 上海: 同济大学, 2019: 48-53. DAI Hai-yan. Research on location and path planning of “last mile” distribution pick-up point based on random selection behavior [D]. Shanghai: Tongji University, 2019: 48-53.
[18]
TILK C, OLKIS K, IRNICH S The last-mile vehicle routing problem with delivery options[J]. OR Spectrum, 2021, 43 (4): 877- 904
doi: 10.1007/s00291-021-00633-0
[19]
SUWATCHARACHAITIWONG S, LIN C C, HUANG W, et al On the medication distribution system for home health care through convenience stores, lockers, and home delivery[J]. Health Informatics Journal, 2020, 26 (4): 3163- 3183
doi: 10.1177/1460458220936395
[20]
熊国文, 张敏, 许文鑫 基于众包模式的两级开闭混合车辆路径优化[J]. 浙江大学学报:工学版, 2021, 55 (12): 2397- 2408 XIONG Guo-wen, ZHANG Min, XU Wen-xin Vehicle routing optimization of two echelon opening and closing hybrid based on crowdsourcing mode[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (12): 2397- 2408
[21]
MURUGAN P, KANNAN S, BASKAR S NSGA-II algorithm for multi-objective generation expansion planning problem[J]. Electric Power Systems Research, 2009, 79 (4): 622- 628
doi: 10.1016/j.jpgr.2008.09.011
[22]
RABBANI M, HEIDARI R, YAZDANPARAST R A stochastic multi-period industrial hazardous waste location-routing problem: integrating NSGA-II and Monte Carlo simulation[J]. European Journal of Operational Research, 2019, 272 (3): 945- 961
doi: 10.1016/j.ejor.2018.07.024
[1]
BERGMANN F M, WAGNER S M, WINKENBACH M Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution[J]. Transportation Research Part B: Methodological, 2020, 131: 26- 62
doi: 10.1016/j.trb.2019.09.013
[2]
RANIERI L, DIGIESI S, SILVESTRI B, et al A review of last mile logistics innovations in an externalities cost reduction vision[J]. Sustainability, 2018, 10 (3): 1- 18
[3]
MILIOTI C, PRAMATARI K, ZAMPOU E Choice of prevailing delivery methods in e-grocery: a stated preference ranking experiment[J]. International Journal of Retail and Distribution Management, 2020, 49 (2): 281- 298
doi: 10.1108/IJRDM-08-2019-0260
[4]
IWAN S, KIJEWSKA K, LEMKE J Analysis of parcel lockers’ efficiency as the last mile delivery solution the results of the research in Poland[J]. Transportation Research Procedia, 2016, 12: 644- 655
doi: 10.1016/j.trpro.2016.02.018
[5]
KEDIA A, KUSUMASTUTI D, NICHOLSON A Acceptability of collection and delivery points from consumers’ perspective: a qualitative case study of Christchurch city[J]. Case Studies on Transport Policy, 2017, 5 (4): 587- 595
doi: 10.1016/j.cstp.2017.10.009
[6]
SONG L, CHERRETT T, MCLEOD F, et al Addressing the last mile problem: transport impacts of collection and delivery points[J]. Transportation Research Record, 2009, 2097 (1): 9- 18
doi: 10.3141/2097-02
[7]
ORENSTEIN I, RAVIV T, SADAN E Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis[J]. EURO Journal on Transportation and Logistics, 2019, 8 (5): 683- 711
doi: 10.1007/s13676-019-00144-7
[8]
GRABENSCHWEIGER J, DOERNER K F, HARTL R F, et al The vehicle routing problem with heterogeneous locker boxes[J]. Central European Journal of Operations Research, 2021, 29 (3): 113- 142
[9]
SITEK P, WIKAREK J Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach[J]. Annals of Operations Research, 2019, 273 (1): 257- 277
[10]
DU Y, FU S, LU C, et al Simultaneous pickup and delivery traveling salesman problem considering the express lockers using attention route planning network[J]. Computational Intelligence and Neuroscience, 2021, 2021: 1- 18
[11]
YU V F, SUSANTO H, YEH Y H, et al The vehicle routing problem with simultaneous pickup and delivery and parcel lockers[J]. Mathematics, 2022, 10 (6): 920- 941
doi: 10.3390/math10060920
[12]
ENTHOVEN D L J U, JARGALSAIKHAN B, ROODBERGEN K J, et al The two-echelon vehicle routing problem with covering options: city logistics with cargo bikes and parcel lockers[J]. Computers and Operations Research, 2020, 118: 1- 17
[13]
REDI A A N P, JEWPANYA P, KURNIAWAN A C, et al A simulated annealing algorithm for solving two-echelon vehicle routing problem with locker facilities[J]. Algorithms, 2020, 13 (9): 218- 231
doi: 10.3390/a13090218
[14]
ZHOU L, BALDACCI R, VIGO D, et al A multi-depot two echelon vehicle routing problem with delivery options arising in the last mile distribution[J]. European Journal of Operational Research, 2018, 265 (2): 765- 778
doi: 10.1016/j.ejor.2017.08.011
[23]
PIERRE D M, ZAKARIA N Stochastic partially optimized cyclic shift crossover for multi-objective genetic algorithms for the vehicle routing problem with time-windows[J]. Applied Soft Computing, 2016, 52: 863- 872
[24]
MORGANTI E, DABLANC L, FORTIN F Final deliveries for online shopping: the deployment of pickup point networks in urban and suburban areas[J]. Research in Transportation Business and Management, 2014, 11: 23- 31
doi: 10.1016/j.rtbm.2014.03.002
[25]
YUEN K F, WANG X, NG L T W, et al An investigation of customers’ intention to use self-collection services for last-mile delivery[J]. Transport Policy, 2018, 66: 1- 8
doi: 10.1016/j.tranpol.2018.03.001
[26]
杨海兰. 考虑客户价值的冷链物流多目标LRPTW问题优化研究[D]. 西安: 长安大学, 2018: 70-71. YANG Hai-lan. Optimization of cold chain logistics multi-objective LRPTW problem considering customer value[D]. Xi’an: Chang’an University, 2018: 70-71.
[27]
常宏远. 网络购物环境下城市最后一公里配送成本研究[D]. 重庆: 重庆大学, 2017: 61-65. Chang Hong-yuan, Cost study on urban last mile distribution under online shopping[D]. Chongqing: Chongqing University, 2017: 61-65.